Skip to main content
Log in

Plasma profiling of amino acids distinguishes acute gout from asymptomatic hyperuricemia

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Gout and hyperuricemia are highly prevalent metabolic diseases caused by high level of uric acid. Amino acids (AAs) involve in various biochemical processes including the biosynthesis of uric acid. However, the role of AAs in discriminating gout from hyperuricemia remains unknown. Here, we report that the plasma AAs profile can distinguish acute gout (AG) from asymptomatic hyperuricemia (AHU). We established an LC–MS/MS-based method to measure the plasma AAs without derivatization for the AG and AHU patients, and healthy controls. We found that the plasma profiling of AAs separated the AG patients from AHU patients and controls visually in both principal component analysis and orthogonal partial least-squares discriminant analysis (OPLS-DA) models. In addition, l-isoleucine, l-lysine, and l-alanine were suggested as the key mediators to distinguish the AG patients from AHU and control groups based on the S-plot analysis and variable importance in the projection values in the OPLS-DA models, volcano plot, and the receiver operating characteristic curves. In addition, the saturation of monosodium urate in the AA solutions at physiologically mimic status supported the changes in plasma AAs facilitating the precipitation of monosodium urate. This study suggests that l-isoleucine, l-lysine, and l-alanine could be the potential markers to distinguish the AG from AHU when the patients have similar blood levels of uric acid, providing new strategies for the prevention, treatment, and management of acute gout.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AA:

Amino acid

ACN:

Acetonitrile

AG:

Acute attack of gout, and acute gout

AHU:

Asymptomatic hyperuricemia

ESI:

Electrospray ionization

MeOH:

Methanol

PCA:

Principal component analysis

OPLS-DA:

Orthogonal partial least-squares discriminant analysis

MSU:

Monosodium urate

UA:

Uric acid

LOD:

Limit of detection

LOQ:

Limit of quantitation

DP:

Declustering potential

CE:

Collision energy

CXP:

Collision cell exit potential

SUS:

Shared and unique structures

VIP:

Variable importance in the projection

ROC:

Receiver operating characteristic

References

  • Aung T, Myung G, FitzGerald JD (2017) Treatment approaches and adherence to urate-lowering therapy for patients with gout. Patient Pref Adherence 11:795–800

    Article  Google Scholar 

  • Baggott JE, Gorman GS, Tamura T (2007) 13C enrichment of carbons 2 and 8 of purine by folate-dependent reactions after [13C]formate and [2-13C]glycine dosing in adult humans. Metabolism 56:708–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bang DH, Xu JF, Keenan RT, Pike VC, Lehmann RA, Tenner C et al (2016) Cardiovascular disease prevalence in patients with osteoarthritis, gout, or both. Bull Hosp Jt Dis 74:113–118

    Google Scholar 

  • Borghi C, Rodriguez-Artalejo F, De Backer G, Dallongeville J, Medina J, Nuevo J et al (2018) Serum uric acid levels are associated with cardiovascular risk score: a post hoc analysis of the EURIKA study. Int J Cardiol 253:167–173

    Article  PubMed  Google Scholar 

  • Carpenter J, Bithell J (2000) Bootstrap confidence intervals: when, which, what? A practical guide for medical statisticians. Stat Med 19:1141–1164

    Article  CAS  PubMed  Google Scholar 

  • Chen YZ, Tang ZZ, Huang ZY, Zhou WW, Li ZY, Li XP et al (2017) The prevalence of gout in mainland China from 2000 to 2016: a systematic review and meta-analysis. J Public Health-Heid 25:521–529

    Article  Google Scholar 

  • Chen YY, Kao TW, Yang HF, Chou CW, Wu CJ, Lai CH et al (2018) The association of uric acid with the risk of metabolic syndrome, arterial hypertension or diabetes in young subjects—an observational study. Clin Chim Acta 478:68–73

    Article  CAS  PubMed  Google Scholar 

  • Conijn NFL, Hoorn EJ, Muradin GS, Kok MR, Vis M (2016) Asymptomatic gout in chronic kidney disease: prevalence study using dual energy CT and ultrasound. Ann Rheum Dis 75:369

    Article  Google Scholar 

  • Dugelay S, Chauvin MF, Megnin-Chanet F, Martin G, Lareal MC, Lhoste JM et al (1999) Acetate stimulates flux through the tricarboxylic acid cycle in rabbit renal proximal tubules synthesizing glutamine from alanine: a C-13 NMR study. Biochem J 342:555–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farres M, Platikanov S, Tsakovski S, Tauler R (2015) Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. J Chemom 29:528–536

    Article  CAS  Google Scholar 

  • Favilla S, Durante C, Vigni ML, Cocchi M (2013) Assessing feature relevance in NPLS models by VIP. Chemom Intell Lab 129:76–86

    Article  CAS  Google Scholar 

  • Feig DI, Kang DH, Johnson RJ (2008) Uric acid and cardiovascular risk. N Engl J Med 359:1811–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felig P (1973) The glucose-alanine cycle. Metabolism 22:179–207

    Article  CAS  PubMed  Google Scholar 

  • Fouad M, Fathy H, Zidan A (2016) Serum uric acid and its association with hypertension, early nephropathy and chronic kidney disease in type 2 diabetic patients. J Bras Nefrol 38:403–410

    Article  PubMed  Google Scholar 

  • George C, Minter DA (2018) Hyperuricemia. StatPearls, Treasure Island

    Google Scholar 

  • Guasch-Ferre M, Hruby A, Toledo E, Clish CB, Martinez-Gonzalez MA, Salas-Salvado J et al (2016) Metabolomics in prediabetes and diabetes: a systematic review and meta-analysis. Diabetes Care 39:833–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannawi S, AlSalmi I, Moller I, Naredo E (2017) Uric acid is independent cardiovascular risk factor, as manifested by increased carotid intima-media thickness in rheumatoid arthritis patients. Clin Rheumatol 36:1897–1902

    Article  PubMed  Google Scholar 

  • Hensgens HE, Meijer AJ (1980) Inhibition of urea-cycle activity by high concentrations of alanine. Biochem J 186:1–4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holecek M (2001) The BCAA-BCKA cycle: its relation to alanine and glutamine synthesis and protein balance. Nutrition 17:70

    Article  CAS  PubMed  Google Scholar 

  • Hsieh YP, Chang CC, Yang Y, Wen YK, Chiu PF, Lin CC (2017) The role of uric acid in chronic kidney disease patients. Nephrology (Carlton) 22:441–448

    Article  CAS  Google Scholar 

  • Johnston RB, Henderson L, Henderson MC (1978) Modulation of activity of alanine racemase from B-subtilis by intermediates of citric-acid cycle and their analogs. Fed Proc 37:1426

    Google Scholar 

  • King C, Lanaspa MA, Jensen T, Tolan DR, Sanchez-Lozada LG, Johnson RJ (2018) Uric acid as a cause of the metabolic syndrome. Contrib Nephrol 192:88–102

    Article  PubMed  Google Scholar 

  • Kuo CF, Grainge MJ, Zhang W, Doherty M (2015) Global epidemiology of gout: prevalence, incidence and risk factors. Nat Rev Rheumatol 11:649

    Article  PubMed  Google Scholar 

  • Li X, Song P, Li J, Wang P, Li G (2015) Relationship between hyperuricemia and dietary risk factors in Chinese adults: a cross-sectional study. Rheumatol Int 35:2079–2089

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Zhang XM, Wang YL, Liu BC (2014) Prevalence of hyperuricemia among Chinese adults: a national cross-sectional survey using multistage, stratified sampling. J Nephrol 27:653–658

    Article  CAS  PubMed  Google Scholar 

  • Liu XY, Luo Y, Zhou CY, Peng A, Liu JY (2017) A sensitive and accurate method to simultaneously measure uric acid and creatinine in human saliva by using LC–MS/MS. Bioanalysis 9:1751–1760

    Article  CAS  PubMed  Google Scholar 

  • Mahbub MH, Yamaguchi N, Takahashi H, Hase R, Amano H, Kobayashi-Miura M et al (2017a) Alteration in plasma free amino acid levels and its association with gout. Environ Health Prev 22:7

    Article  CAS  Google Scholar 

  • Mahbub MH, Yamaguchi N, Takahashi H, Hase R, Ishimaru Y, Sunagawa H et al (2017b) Association of plasma free amino acids with hyperuricemia in relation to diabetes mellitus, dyslipidemia, hypertension and metabolic syndrome. Sci Rep 7:17616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao Z, Li C, Chen Y, Zhao S, Wang Y, Wang Z et al (2008) Dietary and lifestyle changes associated with high prevalence of hyperuricemia and gout in the Shandong coastal cities of Eastern China. J Rheumatol 35:1859–1864

    PubMed  Google Scholar 

  • Mok Y, Lee SJ, Kim MS, Cui W, Moon YM, Jee SH (2012) Serum uric acid and chronic kidney disease: the Severance cohort study. Nephrol Dial Transplant 27:1831–1835

    Article  CAS  PubMed  Google Scholar 

  • Mook-Kanamori DO, Romisch-Margl W, Kastenmuller G, Prehn C, Petersen AK, Illig T et al (2014) Increased amino acids levels and the risk of developing of hypertriglyceridemia in a 7-year follow-up. J Endocrinol Investig 37:369–374

    Article  CAS  Google Scholar 

  • Neogi T, Jansen TLTA, Dalbeth N, Fransen J, Schumacher HR, Berendsen D et al (2015) 2015 Gout classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis 74:1789–1798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu L, Cheng XQ, Wu J, Liu JT, Xu T, Ding HT et al (2013) Prevalence of hyperuricemia and its related risk factors in healthy adults from Northern and Northeastern Chinese provinces. BMC Public Health 13:664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai SK, Avina-Zubieta JA, McCormick N, De Vera M, Shojania K, Sayre EC et al (2015) Rising incidence and prevalence of gout in the Canadian General Population. Arthritis Rheumatol 67:292

    Google Scholar 

  • Rai SK, Avina-Zubieta JA, McCormick N, De Vera MA, Shojania K, Sayre EC et al (2017) The rising prevalence and incidence of gout in British Columbia, Canada: population-based trends from 2000 to 2012. Semin Arthritis Rheum 46:451–456

    Article  PubMed  Google Scholar 

  • Richette P, Bardin T (2010) Gout. Lancet 375:318–328

    Article  CAS  PubMed  Google Scholar 

  • Richette P, Perez-Ruiz F, Doherty M, Jansen TL, Nuki G, Pascual E et al (2014) Improving cardiovascular and renal outcomes in gout: what should we target? Nat Rev Rheumatol 10:654–661

    Article  CAS  PubMed  Google Scholar 

  • Rocha M, Licausi F, Araujo WL, Nunes-Nesi A, Sodek L, Fernie AR et al (2010) Glycolysis and the tricarboxylic acid cycle are linked by alanine aminotransferase during hypoxia induced by waterlogging of Lotus japonicus. Plant Physiol 152:1501–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villegas R, Xiang YB, Cai Q, Fazio S, Linton M, Li H et al (2010) Prevalence and determinants of hyperuricemia in middle-aged, urban Chinese men. Metab Syndr Relat Disord 8:263–270

    Article  PubMed  PubMed Central  Google Scholar 

  • Wurtz P, Soininen P, Kangas AJ, Ronnemaa T, Lehtimaki T, Kahonen M et al (2013) Branched-chain and aromatic amino acids are predictors of insulin resistance in young adults. Diabetes Care 36:648–655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Chang H, Gao Y, Wang X, Xu W, Liu D et al (2012) Major dietary patterns and risk of asymptomatic hyperuricemia in Chinese adults. J Nutr Sci Vitaminol (Tokyo) 58:339–345

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported NSFC Grant 81470588 (J.-Y. L.). The authors would like to thank all the patients and healthy volunteers for the participation in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ai Peng or Jun-Yan Liu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Research involving human participants and/or animals

The authors complied with the World Medical Association Declaration of Helsinki regarding the ethical conduct of research involving in human subjects. This study and the associated protocols for sample collection were approved by the Ethics Committee of Shanghai Tenth People’s Hospital (SHSY-IEC-KY-4.0/17–60/01).

Informed consent

Informed consent was obtained from all individual participants included in this study.

Additional information

Handling Editor: D. Tsikas.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 188 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Y., Wang, L., Liu, XY. et al. Plasma profiling of amino acids distinguishes acute gout from asymptomatic hyperuricemia. Amino Acids 50, 1539–1548 (2018). https://doi.org/10.1007/s00726-018-2627-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-018-2627-2

Keywords

Navigation