Skip to main content
Log in

Hydraulische Modellierung und die Ermittlung des repräsentativen Elementarvolumens (REV) im Kluftgestein

Hydraulic modelling and the evaluation of the representative elementary volume (REV) in fractured rock

  • Fachbeiträge
  • Published:
Grundwasser Aims and scope Submit manuscript

Kurzfassung

Ziel der vorliegenden Arbeit ist die Entwicklung einer Methode zur Ermittlung der hydraulischen Durchlässigkeit und des repräsentativen Elementarvolumens (REV) in Kluftgrundwasserleitern, die zur hydraulischen Modellierung von großräumigen Kluftsystemen verwendet werden kann. Für die Ermittlung der Durchlässigkeit wurden zweidimensionale stochastische Kluftnetze simuliert. Aufgrund der Tatsache, dass die Kluftdichten im Untersuchungsgebiet stark variieren, wurde eine Sensitivitätsstudie durchgeführt, in der drei verschiedene Kluftdichten hinsichtlich ihrer hydraulischen Eigenschaften genauer untersucht wurden. Das Fließverhalten in den Kluftnetzen wurde durch das kubische Gesetz (cubic law) beschrieben. Die hydraulische Modellierung im Kluftgestein zeigte, dass nicht für alle Kluftnetze ein REV ermittelt werden konnte. Für Kluftnetze mit einer mittleren (P21 = 13,1 m–1) und großen Kluftdichte (P21 = 16,9 m–1) konnte bis auf eine einzige Ausnahme für alle drei untersuchten Gesteinsformationen ein REV mit einer Größe von 10 m × 10 m ermittelt werden. Hingegen konnte für Kluftnetze mit einer geringen Kluftdichte (P21 = 5,1 m–1) kein REV bestimmt werden.

Abstract

The objective of the following study is the development of a method for the evaluation of the hydraulic conductivity and the representative elementary volume (REV) in fractured rock aquifers, which can be used for the hydraulic modelling of large-scale fractured systems. Two-dimensional stochastic discrete fracture networks were simulated for the evaluation of hydraulic conductivity. Due to the strongly variable fracture density in the considered area, a sensitivity study was performed which examined three various fracture densities according to their hydraulic properties. The flow behaviour in the discrete fracture networks is described with the cubic law. The hydraulic modelling in the fractured rock showed that an REV could not be determined for all discrete fracture networks. With one exception, an REV with a size of 10 m × 10 m could be determined for discrete fracture networks with a medium (P21 = 13.1 m–1) and high fracture density (P21 = 16.9 m–1). In contrast, no REV could be found for discrete fracture networks with a low fracture density (P21 = 5.1 m–1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Acuna, J.A., Yortsos, Y.C.: Application of fractal geometry to the study of networks of fractures and their pressure transient.- Water Resour. Res. 31 (3): 527–540. (1995)

    Article  Google Scholar 

  • AkEnd: Auswahlverfahren für Endlagerstandorte – Empfehlungen des AkEnd – Arbeitskreis Auswahlverfahren Endlagerstandorte.- 45 S., 8 Tab.; Köln. (2002)

  • Andersson, J., Shapiro, A.M., Bear, J.: A stochastic model of a fractured rock conditioned by measured information.- Water Resour. Res. 20 (1): 79–88. (1984)

    Google Scholar 

  • Bandis, S.C., Lumdsen, A.C., Barton, N.R.: Fundamental of rock joint deformation.- Int. J. Rock Mech. Min. Sci. Geom. Abstr. 20: 249–268. (1983)

    Google Scholar 

  • Barton, C.C.: Fractal analysis of scaling and spatial clustering of fractures.- In: Barton, C.C., La Pointe, P.R. (Hrsg.): Fractal in earth sciences: 141–178. (1995)

  • Bear, J.: Dynamics of fluids in porous media.- 764 S.; New York. (1972)

  • Berkowitz, B.: Characterizing flow and transport in fractured geological media: A review.- Adv. Water Resour. 25: 861–884. (2002)

    Google Scholar 

  • Bonnet, E., Bour, O., Odling, N.E., Davy, P., Main, I., Cowie, P., Berkowitz, B.: Scaling of fracture systems in geological media.- Rev. Geophys. 39 (3): 347–383. (2001)

    Article  Google Scholar 

  • Bour, O., Davy, P.: Connectivity of random fault networks following a power-law fault length distribution.- Water Resour. Res. 33: 1567–1583. (1997)

    Google Scholar 

  • Bourne, S.J., Rijkels, L., Stephenson, B.J., Willemse, E.J.M.: Predictive modelling of naturally fractured rock reservoirs using geomechanics and flow simulations.- GeoArabia 6 (1): 27–42. (2001)

    Google Scholar 

  • Blum, P., Mackay, R., Riley, M.S.: Coupled hydro-mechanical modelling of flow in fractured rock.- In: Krásný, Hrkal, Bruthans (Hrsg.): International Conference on Groundwater in Fractured Rock: 399–400. (2003)

  • Blum, P.: Upscaling of hydro-mechanical processes in fractured rock.- Ph.D. Thesis, School of Geography, Earth and Environmental Sciences, University of Birmingham, United Kingdom. (2004)

  • Blum, P., Mackay, R., Riley, M.S.: Development of a methodology to quantify the importance of hydro-mechanical processes in radionuclide migration assessments.- In: Stephansson, O., Hudson, J.A., Jing, L. (Hrsg.): Coupled thermo-hydro-mechanical-chemical processes in geo-systems: 231–236. (2004a)

  • Blum, P., Mackay, R., Riley, M.S.: Understanding the impact of hydro-mechanical coupling on performance assessment of deep waste disposal.- In: Stephansson, O., Hudson, J.A., Jing, L. (Hrsg.): Coupled thermo-hydro-mechanical-chemical processes in geo-systems: 237–242. (2004b)

  • Blum, P., Mackay, R., Riley, M.S., Knight, J.L.: Performance assessment of a nuclear waste repository: upscaling coupled hydro-mechanical properties for far-field transport analysis.- Int. J. Rock Mech. Min. Sci. 42: 781–792. (2005)

    Google Scholar 

  • Brown, S.R.: Fluid flow through rock joints: the effects of surface roughness.- Journal of Geophysical Research 92: 1337–1347. (1987)

    Google Scholar 

  • Castaing, C., Halawani, M.A., Gervais, F., Chilès, J.P., Genter, A., Bourgine, B., Ouillon, G., Brosse, J.M., Martin, P., Genna, A., Janjou, D. (1996): Scaling relationships in intraplate fracture systems related to Red Sea rifting.- Tectonophys. 261: 291–314.

  • Chilès, J.P.: Fractal and geostatistical methods for modelling of a fracture network.- Math. Geol. 20 (6): 631–654. (1988)

    Article  Google Scholar 

  • Dershowitz, W.S.: Rock joint systems.- Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, Massachusetts. (1984)

  • Dershowitz, W.S., Einstein, H.H.: Characterizing rock joint geometry with joint system models.- Rock Mech. Rock Eng. 21: 21–51. (1988)

    Google Scholar 

  • Dershowitz, W.S., Lee, G., Geier, J., Foxford, T., LaPointe, P., Thomas, A.: User documentation, FracMan.- Version 2.6, Golder Associates Inc., Seattle, Washington, D.C. (1998)

  • Feng, Q., Sjögren, P., Stephansson, O., Jing, L.: Measuring fracture orientation at exposed rock faces by using non-reflector total station.- Eng. Geol. 59: 133–146. (2001)

    Google Scholar 

  • Frohlich, R.K., Fisher, J.J., Summerly, E.: Electric-hydraulic conductivity correlation in fractured crystalline bedrock: Central Landfill, Rhode Islands, USA.- J. Appl. Geophys. 35: 249–259. (1996)

    Google Scholar 

  • Hakami, E., Larsson, E.: Aperture Measurements and flow Experiments on a Single Natural Fracture.- Int. J. Rock Mech. Min. Sci. 33 (4): 395–404. (1996)

    Article  Google Scholar 

  • Harbaugh, A.W., Banta, E.R., Hill, M.C., McDonald, M.G.: MODFLOW-2000, the U.S. Geological Survey modular ground-water model − User guide to modularization concepts and the Ground-Water Flow Process.- 121 S., U.S. Geological Survey Open-File Report 00-92, Virginia. (2000)

  • Heathcote, J.A., Jones, M.A., Herbert, A.W.: Modelling groundwater flow in the Sellafield area.- Q.J. Eng. Geol. 29: 39–57. (1996)

    Google Scholar 

  • Herbert, A.W., Lanyon, G.W.: NAPSAC (Release 3.0) Command Reference Manuel.- AEA D&R 0273 Release 3.0, AEA Technology, Harwell. (1994)

  • Hudson, J.A., Stephansson, O., Andersson, J., Tsang, C.-F., Jing, L.: Coupled T-H-M- issues relating to radioactive waste repository design and performance.- Int. J. Rock Mech. Min. Sci. 38: 143–161. (2001)

    Google Scholar 

  • Itasca: UDEC: User’s Guide.- Itasca Consulting Group Inc., Minneapolis, Minnesota. (2000)

  • Jackson, C.P., Hoch, A.R., Todman, S.: Self-consistency of a heterogeneous continuum porous medium representation of fractured media.- Water Resour. Res. 36 (1): 189–202. (2000)

    Article  Google Scholar 

  • Lee, C.-H., Farmer, I.: Fluid flow in discontinuous rock.- 169 S.; London. (1993)

  • Lee, C.-H., Chang, J.-L., Hsu, K.-T.: Investigation of hydraulic aperture at surface exposed rock fractures in situ.- Géotechn. 46 (2): 343–349. (1996)

    Article  Google Scholar 

  • Long, J.C.S., Remer, J.S., Wilson, C.R., Witherspoon, P.A.: Porous media equivalents for networks of discontinous fractures.- Water Resour. Res. 18 (3): 645–658. (1982)

    Google Scholar 

  • Louis, C.: Strömungsvorgänge in klüftigen Medien und ihre Wirkung auf die Standsicherheit von Bauwerken und Böschungen im Fels.- Ph.D. Thesis, Technische Universität Karlsruhe, Karlsruhe. (1967)

  • McKeown, C., Haszeldine, R.S., Couples, G.D.: Mathematical modelling of groundwater flow at Sellafield, UK.- Eng. Geol. 52: 231–250. (1999)

  • Moreno, L., Tsang, Y.W., Tsang, C.-F., Hale, F.V., Neretnieks, I.: Flow and transport in a single fracture: a stochastic model and its relation to some field observations.- Water Resour. Res. 24, 2033–2048. (1988)

    Google Scholar 

  • Narr, W.: Estimating fracture spacing in subsurface rock.- AAPG Bull. 80 (10): 1565–1586. (1996)

    Google Scholar 

  • Neuman, S.P.: Generalized scaling of permeabilities: validation and effect of support scale.- Geophys. Res. Lett. 21 (5): 349–352. (1994)

    Article  Google Scholar 

  • Nirex: The lithological and discontinuity characteristics of the Borrowdale Volcanic Group at the outcrop in the Craghouse Park and Latterbarrow areas.- Nirex Report SA/97/029, Harwell. (1997a)

  • Nirex: Evaluation of heterogeneity and scaling of fractures in the Borrowdale Volcanic Group in the Sellafield area.- Nirex Report SA/97/028, Harwell. (1997b)

  • Nirex: An assessment of the post-closure performance of a deep waste respository at Sellafield: Volume 2 – Hydrogeological model development – Effective parameters.- Nirex Science Report S/97/012, Harwell. (1997c)

  • Oron, A.P., Berkowitz, B.: Flow in fractures: The local cubic law assumption reexamined.- Water Resour. Res. 34 (11): 2811–2825. (1998)

    Article  Google Scholar 

  • Panda, B.B., Kulatilake, P.H.S.W.: Effect of geometry and transmissivity on jointed rock hydraulics.- Journal of Engineering Mechanics 125 (1): 41–50. (1999)

    Article  Google Scholar 

  • Pickering, G., Bull, J.M., Sanderson, D.J.: Sampling power-law distributions.- Tectonophys. 248: 1–20. (1995)

    Google Scholar 

  • Pollard, D.D., Ayadin, A.: Progress in understanding jointing over the past century.- Geol. Soc. Am. Bull. 100: 1181–1204. (1988)

    Google Scholar 

  • Poteri, A., Billaux, D., Dershowitz, W., Gómez-Hernández, J., Cvetkovic, V., Hautojärvi, A., Holton, D., Medina, A., Winberg, A.: Final report of the TRUE Block Scale project – 3. Modelling of flow and transport.- SKB, Technical Report, TR-02-15; Stockholm, Sweden. (2002)

  • Priest, S.D.: Discontinuity analysis for rock engineering.- 472 S.; London. (1993)

  • Priest, S.D., Hudson, J.A.: Estimation of discontinuity spacing and trace length using scanline surveys.- Int. J. Rock Mech. Min. Sci. & Geo. Abstr. 18: 183–197. (1981)

    Google Scholar 

  • Renshaw, C.E.: On the relationship between mechanical and hydraulic apertures in rough-walled fractures.- Journal of Geophysical Research 100 (B12): 24.629–24.636. (1995)

  • Riley, M.S.: An algorithm for generating rock fracture patterns: mathematical analysis.- Math. Geol. 36 (6): 683–702. (2004)

    Article  Google Scholar 

  • Ryan, J.L., Lonergan, L., Jolly, R.J.H.: Fracture spacing and orientation distributions for two-dimensional data sets.- J. Geophys. Res.- Solid Earth 105 (B8): 19305–19320. (2000)

    Google Scholar 

  • Snow, D.T.: A parallel plate model of fractured permeable media.- Ph.D. Thesis, University of California, Berkeley. (1965)

  • Stephansson, O., Jing, L., Tsang, C.-F. (Hrsg.): Coupled thermo-hydro-mechanical processes of fractured media.- Developments in Geotechnical Engineering 79; Amsterdam. (1996)

  • Stephansson, O., Hudson, J.A., Jing, L. (Hrsg.): Coupled thermo-hydro-mechanical-chemical processes in geo-systems: Fundamentals, modelling, experiments and applications.- 807 S.; Amsterdam. (2004)

  • Terzaghi, R.D.: Sources of error in joint surveys.- Geotechnique 15: 287–304. (1965)

    Google Scholar 

  • Thompson, M.E., Brown, S.R.: The effect of anisotropic surface roughness on flow and transport in fractures.- Journal of Geophysical Research 96: 21.923–21.932. (1991)

    Google Scholar 

  • Tsang, C.-F.: Tracer transport in fractured systems.- In: Bear, J., Tsang, C.-F., de Marsily, G. (Hrsg.): Flow and contaminant transport in fractured rock: 237–266. (1993)

  • Tsang, Y.W.: Usage of „equivalent apertures“ for rock fractures as derived from hydraulic and tracer tests.- Water Resour. Res. 28 (5): 1451–1455. (1992)

    Article  Google Scholar 

  • Wathugala, D.N., Kulatilake, P.H.S.W., Wathugala, G.W., Stephansson, O.: A general procedure to correct sampling bias on joint orientation using a vector approach.- Comp. Geotech. 10: 1–31. (1990)

    Google Scholar 

  • Witherspoon, P.A., Bodvardsson, G.S. (Hrsg.): Geological challenges in radioactive waste isolation: Third worldwide review.- Lawrence Berkeley National Laboratory, LBNL-38915, Berkeley, CA. (2001)

  • Whitherspoon, P.A., Wang, J.S.Y., Iwai, K., Gale, J.E.: Validility of cubic law for fluid flow in a deformable rock fracture.- Water Resour. Res. 16 (6): 1016–1024. (1980)

    Article  Google Scholar 

  • Wu, H., Pollard, D.D.: Imaging 3-D fracture networks around boreholes.- AAPG Bulletin 86 (4): 593–604. (2002)

    Google Scholar 

  • Zhang, L., Einstein, H.H.: Estimating the mean trace length of rock discontinuities.- Rock Mech. Rock Eng. 31 (4): 217–235. (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Blum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blum, P., Mackay, R., Riley, M. et al. Hydraulische Modellierung und die Ermittlung des repräsentativen Elementarvolumens (REV) im Kluftgestein. Grundwasser 12, 48–65 (2007). https://doi.org/10.1007/s00767-007-0017-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00767-007-0017-x

Keywords

Navigation