Skip to main content
Log in

Effects of the bisphosphonate risedronate on osteopenia in OASIS-deficient mice

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Endoplasmic reticulum (ER) stress has been reported to be linked to various diseases such as diabetes, neurodegenerative diseases, and osteogenesis imperfecta (OI). Old astrocyte specifically induced substance (OASIS), a novel type of ER stress transducer, is a basic leucine zipper transcription factor belonging to the CREB/ATF family and is markedly expressed in osteoblasts. Recently, we demonstrated that OASIS activates the transcription of the gene for type I collagen, Col1a1, and contributes to the secretion of bone matrix proteins in osteoblasts. OASIS−/− mice exhibit severe osteopenia involving a decrease in type I collagen in the bone matrix and a dysfunction of osteoblasts, which show abnormal expansion of the rough ER. These phenotypic features of osteopenia are similar to those observed in OI type I. In this study, we investigated whether administration of the third-generation bisphosphonate risedronate (RIS) is effective for treating osteopenia in OASIS−/− mice. Histological and histomorphometric analyses revealed that the trabecular bones increased dramatically in OASIS−/− mice treated with RIS, owing to the inhibition of bone resorption. Intriguingly, the abnormal expansion of the rough ER in OASIS−/− osteoblasts was improved by the treatment with RIS. Taken together, we conclude that OASIS−/− mice will be useful as new model mice for evaluating the medicinal effects of osteopenia treatments and developing new drugs for the osteopenia associated with diseases such as OI and osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gething MJ, Sambrook J (1992) Protein folding in the cell. Nature 355:33–45

    Article  CAS  PubMed  Google Scholar 

  2. Ellgaard L, Molinari M, Helenius A (1999) Setting the standards: quality control in the secretory pathway. Science 286:1882–1888

    Article  CAS  PubMed  Google Scholar 

  3. Mori K (2000) Tripartite management of unfolded proteins in the endoplasmic reticulum. Cell 101:451–454

    Article  CAS  PubMed  Google Scholar 

  4. Ron D (2002) Translational control in the endoplasmic reticulum stress response. J Clin Invest 110:1383–1388

    CAS  PubMed  Google Scholar 

  5. Schröder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569:29–63

    PubMed  Google Scholar 

  6. Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, Sabatini DD, Ron D (2001) Diabetes mellitus and exocrine pancreatic dysfunction in perk−/− mice reveals a role for translational control in secretory cell survival. Mol Cell 7:1153–1163

    Article  CAS  PubMed  Google Scholar 

  7. Lindholm D, Wootz H, Korhonen L (2006) ER stress and neurodegenerative diseases. Cell Death Differ 13:385–392

    Article  CAS  PubMed  Google Scholar 

  8. Lisse TS, Thiele F, Fuchs H, Hans W, Przemeck GK, Abe K, Rathkolb B, Quintanilla-Martinez L, Hoelzlwimmer G, Helfrich M, Wolf E, Ralston SH, Hrabé de Angelis M (2008) ER stress-mediated apoptosis in a new mouse model of osteogenesis imperfecta. PLoS Genet 4:e7

    Article  PubMed  CAS  Google Scholar 

  9. Martin TJ, Sims NA (2005) Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med 11:76–81

    Article  CAS  PubMed  Google Scholar 

  10. Matsuo K, Irie N (2008) Osteoclast-osteoblast communication. Arch Biochem Biophys 473:201–209

    Article  CAS  PubMed  Google Scholar 

  11. Karsenty G, Wagner EF (2002) Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2:389–406

    Article  CAS  PubMed  Google Scholar 

  12. Franz-Odendaal TA, Hall BK, Witten PE (2006) Buried alive: how osteoblasts become osteocytes. Dev Dyn 235:176–190

    Article  CAS  PubMed  Google Scholar 

  13. Viguet-Carrin S, Garnero P, Delmas PD (2006) The role of collagen in bone strength. Osteoporos Int 17:319–336

    Article  CAS  PubMed  Google Scholar 

  14. Dalgleish R (1997) The human type I collagen mutation database. Nucleic Acids Res 25:181–187

    Article  CAS  PubMed  Google Scholar 

  15. Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD et al (2007) Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat 28:209–221

    Article  CAS  PubMed  Google Scholar 

  16. Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L et al (2006) CRTAP is required for prolyl 3-hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127:291–304

    Article  CAS  PubMed  Google Scholar 

  17. Cabral WA, Chang W, Barnes AM, Weis M, Scott MA, Leikin S, Makareeva E, Kuznetsova NV, Rosenbaum KN, Tifft CJ, Bulas DI, Kozma C, Smith PA, Eyre DR, Marini JC (2007) Prolyl 3-hydroxylase 1 deficiency causes a recessive metabolic bone disorder resembling lethal/severe osteogenesis imperfecta. Nat Genet 39:359–365

    Article  CAS  PubMed  Google Scholar 

  18. Honma Y, Kanazawa K, Mori T, Tanno Y, Tojo M, Kiyosawa H, Takeda J, Nikaido T, Tsukamoto T, Yokoya S, Wanaka A (1999) Identification of a novel gene, OASIS, which encodes for a putative CREB/ATF family transcription factor in the long-term cultured astrocytes and gliotic tissue. Brain Res Mol Brain Res 69:93–103

    Article  CAS  PubMed  Google Scholar 

  19. Kondo S, Murakami T, Tatsumi K, Ogata M, Kanemoto S, Otori K, Iseki K, Wanaka A, Imaizumi K (2005) OASIS, a CREB/ATF-family member, modulates UPR signalling in astrocytes. Nat Cell Biol 7:186–194

    Article  CAS  PubMed  Google Scholar 

  20. Murakami T, Kondo S, Ogata M, Kanemoto S, Saito A, Wanaka A, Imaizumi K (2006) Cleavage of the membrane-bound transcription factor OASIS in response to endoplasmic reticulum stress. J Neurochem 96:1090–1100

    Article  CAS  PubMed  Google Scholar 

  21. Nikaido T, Yokoya S, Mori T, Hagino S, Iseki K, Zhang Y, Takeuchi M, Takaki H, Kikuchi S, Wanaka A (2001) Expression of the novel transcription factor OASIS, which belongs to the CREB/ATF family, in mouse embryo with special reference to bone development. Histochem Cell Biol 116:141–148

    CAS  PubMed  Google Scholar 

  22. Murakami T, Saito A, Hino SI, Kondo S, Kanemoto S et al (2009) Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation. Nat Cell Biol 11:1205–1211

    Article  CAS  PubMed  Google Scholar 

  23. Saito A, Hino S, Murakami T, Kanemoto S, Kondo S, Saitoh M, Nishimura R, Yoneda T, Furuichi T, Ikegawa S, Ikawa M, Okabe M, Imaizumi K (2009) Regulation of endoplasmic reticulum stress response by a BBF2H7-mediated Sec23a pathway is essential for chondrogenesis. Nat Cell Biol 11:1197–1204

    Article  CAS  PubMed  Google Scholar 

  24. Barsh GS, David KE, Byers PH (1982) Type I osteogenesis imperfecta: a nonfunctional allele for pro alpha 1 (I) chains of type I procollagen. Proc Natl Acad Sci USA 79:3838–3842

    Article  CAS  PubMed  Google Scholar 

  25. Bonadio J, Saunders TL, Tsai E, Goldstein SA, Morris-Wiman J, Brinkley L, Dolan DF, Altschuler RA, Hawkins JE Jr, Bateman JF, Mascara T, Jaenisch R (1990) Transgenic mouse model of the mild dominant form of osteogenesis imperfecta. Proc Natl Acad Sci USA 87:7145–7149

    Article  CAS  PubMed  Google Scholar 

  26. Chipman SD, Sweet HO, McBride DJ Jr, Davisson MT, Marks SC Jr, Shuldiner AR, Wenstrup RJ, Rowe DW, Shapiro JR (1993) Defective pro alpha 2(I) collagen synthesis in a recessive mutation in mice: a model of human osteogenesis imperfecta. Proc Natl Acad Sci USA 90:1701–1705

    Article  CAS  PubMed  Google Scholar 

  27. Kamoun-Goldrat AS, Le Merrer MF (2007) Animal models of osteogenesis imperfecta and related syndromes. J Bone Miner Metab 25:211–218

    Article  PubMed  Google Scholar 

  28. Chapurlat RD, Delmas PD (2006) Drug insight: Bisphosphonates for postmenopausal osteoporosis. Nat Clin Pract Endocrinol Metab 2:211–219

    Article  CAS  PubMed  Google Scholar 

  29. Rodan GA, Fleisch HA (1996) Bisphosphonates: mechanisms of action. J Clin Invest 97:2692–2696

    Article  CAS  PubMed  Google Scholar 

  30. Glorieux FH, Bishop NJ, Plotkin H, Chabot G, Lanoue G, Travers R (1998) Cyclic administration of pamidronate in children with severe osteogenesis imperfecta. N Engl J Med 339:947–952

    Article  CAS  PubMed  Google Scholar 

  31. Aström E, Söderhäll S (2002) Beneficial effect of long term intravenous bisphosphonate treatment of osteogenesis imperfecta. Arch Dis Child 86:356–364

    Article  PubMed  Google Scholar 

  32. Nakamura M, Udagawa N, Matsuura S, Mogi M, Nakamura H, Horiuchi H, Saito N, Hiraoka BY, Kobayashi Y, Takaoka K, Ozawa H, Miyazawa H, Takahashi N (2003) Osteoprotegerin regulates bone formation through a coupling mechanism with bone resorption. Endocrinology 144:5441–5449

    Article  CAS  PubMed  Google Scholar 

  33. Domenicucci C, Goldberg HA, Hofmann T, Isenman D, Wasi S, Sodek J (1988) Characterization of porcine osteonectin extracted from foetal calbariae. Biochem J 253:139–151

    CAS  PubMed  Google Scholar 

  34. Wei J, Sheng X, Feng D, McGrath B, Cavener DR (2008) PERK is essential for neonatal skeletal development to regulate osteoblast proliferation and differentiation. J Cell Physiol 217:693–707

    Article  CAS  PubMed  Google Scholar 

  35. Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, Mundy GR, Boyce BF (1995) Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 10:1478–1487

    Article  CAS  PubMed  Google Scholar 

  36. Fisher JE, Rodan GA, Reszka AA (2000) In vivo effects of bisphosphonates on the osteoclast mevalonate pathway. Endocrinology 141:4793–4796

    Article  CAS  PubMed  Google Scholar 

  37. Camacho NP, Raggio CL, Doty SB, Root L, Zraick V, IIg WA, Toledano TR, Boskey AL (2001) A controlled study of the Effects of alendronate in a growing mouse model of osteogenesis imperfecta. Calcif Tissue Int 69:94–101

    Article  CAS  PubMed  Google Scholar 

  38. Misof BM, Roschger P, Baldini T, Raggio CL, Zraick V, Root L, Boskey AL, Klaushofer K, Fratzl P, Camacho NP (2005) Differential effects of alendronate treatment on bone from growing osteogenesis imperfecta and wild-type mouse. Bone 36:150–158

    Article  CAS  PubMed  Google Scholar 

  39. Plotkin LI, Weinstein RS, Parfitt AM, Roberson PK, Manolagas SC, Bellido T (1999) Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest 104:1363–1374

    Article  CAS  PubMed  Google Scholar 

  40. Reinholz GG, Getz B, Pederson L, Sanders ES, Subramaniam M, Ingle JN, Spelsberg TC (2000) Bisphosphonates directly regulate cell proliferation, differentiation, and gene expression in human osteoblasts. Cancer Res 60:6001–6007

    CAS  PubMed  Google Scholar 

  41. Viereck V, Emons G, Lauck V, Frosch KH, Blaschke S, Gründker C, Hofbauer LC (2002) Bisphosphonates pamidronate and zoledronic acid stimulate osteoprotegerin production by primary human osteoblasts. Biochem Biophys Res Commun 291:680–686

    Article  CAS  PubMed  Google Scholar 

  42. Rouch F, Travers R, Plotkin H, Glorieux FH (2002) The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta. J Clin Invest 110:1293–1299

    Google Scholar 

  43. Sarathchandra P, Pope FM, Kayser MV, Ali SY (2000) A light and electron microscopic study of osteogenesis imperfecta bone samples, with reference to collagen chemistry and clinical phenotype. J Pathol 192:385–395

    Article  CAS  PubMed  Google Scholar 

  44. Forlino A, Kuznetsova NV, Mrini JC, Leikin S (2007) Selective retention and degradation of molecules with a single mutant alpha1(I) chain in the Brtl IV mouse model of OI. Matrix Biol 26:604–614

    Article  CAS  PubMed  Google Scholar 

  45. Alexander JM, Bab I, Fish S, Müller R, Uchiyama T, Gronowicz G, Nahounou M, Zhao Q, White DW, Chorev M, Gazit D, Rosenblatt M (2001) Human parathyroid hormone 1–34 reverses bone loss in ovariectomized mice. J Bone Miner Res 16:1665–1673

    Article  CAS  PubMed  Google Scholar 

  46. Kostenuik PJ, Bolon B, Morony S, Daris M, Geng Z, Carter C, Sheng J (2004) Gene therapy with human recombinant osteoprotegerin reverses established osteopenia in ovariectomized mice. Bone 34:656–664

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Tomoko Kawanami and Ms. Ikuyo Tuchimoti for technical support. This work was supported by grants from the Japan Society for the Promotion of Science KAKENHI (nos. 20059028, 20890175, 21790323, 21790174, and 20-3757), the Naito Foundation, the Sumitomo Foundation, the Mochida Memorial Foundation for Medical and Pharmaceutical Research, and Astellas Foundation for Research on Metabolic Disorders.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomohiko Murakami or Kazunori Imaizumi.

About this article

Cite this article

Sekiya, H., Murakami, T., Saito, A. et al. Effects of the bisphosphonate risedronate on osteopenia in OASIS-deficient mice. J Bone Miner Metab 28, 384–394 (2010). https://doi.org/10.1007/s00774-009-0142-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-009-0142-y

Keywords

Navigation