Skip to main content
Log in

Oxidizing intermediates in cytochrome P450 model reactions

  • Commentary
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Oxoiron(IV) porphyrin π-cation radicals have been considered as the sole reactive species in the catalytic oxidation of organic substrates by cytochromes P450 and their iron porphyrin models over the past two decades. Recent studies from several laboratories, however, have provided experimental evidence that multiple oxidizing species are involved in the oxygen transfer reactions and that the mechanism of oxygen transfer is much more complex than initially believed. In this Commentary, reactive intermediates that have been shown or proposed to be involved in iron porphyrin complex-catalyzed oxidation reactions are reviewed. Particularly, the current controversy on the oxoiron(IV) porphyrin π-cation radical as a sole reactive species versus the involvement of multiple oxidizing species in oxygen transfer reactions is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Scheme 4
Scheme 5
Scheme 6

Similar content being viewed by others

Abbreviations

F 5 PhIO:

pentafluoroiodosylbenzene

m-CPBA:

m-chloroperbenzoic acid

OEP:

dianion of octaethylporphyrin

PhIO:

iodosylbenzene

PPAA:

peroxyphenylacetic acid

TDCPP:

dianion of meso-tetrakis(2,6-dichlorophenyl)porphyrin

TMP:

dianion of meso-tetramesitylporphyrin

TPFPP:

dianion of meso-tetrakis(pentafluorophenyl)porphyrin

TPP:

dianion of meso-tetraphenylporphyrin

TTPPP:

dianion of meso-tetrakis(2,4,6-triphenylphenyl)porphyrin

References

  1. Ortiz de Montellano PR (ed) (1995) Cytochrome P450: structure, mechanism, and biochenistry, 2nd edn. Plenum, New York

    Google Scholar 

  2. Sono M, Roach MP, Coulter ED, Dawson JH (1996) Chem Rev 96:2841–2887

    Article  CAS  PubMed  Google Scholar 

  3. Kadish KM, Smith KM, Guilard R (eds) (2000) The porphyrin handbook, vol 4. Academic Press, San Diego

  4. McLain JL, Lee J, Groves JT (2000) In: Meunier B (ed) Biomimetic oxidations catalyzed by transition metal complexes. Imperial College Press, London, pp 91–169

  5. Meunier B, Bernadou J (2000) Struct Bonding 97:1–35

    CAS  Google Scholar 

  6. Nam W (2003) In: Que L, Tolman WB (eds) Comprehensive coordination chemistry II, vol 8. Elsevier, Oxford, pp 281–307

  7. Egawa T, Shimada H, Ishimura Y (1994) Biochem Biophys Res Commun 201:1464–1469

    Article  CAS  PubMed  Google Scholar 

  8. Schlichting I, Berendzen J, Chu K, Stock AM, Maves SA, Benson DE, Sweet RM, Ringe D, Petsko GA, Sligar SG (2000) Science 287:1615–1622

    Article  CAS  PubMed  Google Scholar 

  9. Kellner DG, Hung SC, Weiss KE, Sligar SG (2002) J Biol Chem 277:9641–9644

    Article  CAS  PubMed  Google Scholar 

  10. Groves JT (2003) Proc Natl Acad Sci USA 100:3569–3574

    Article  CAS  PubMed  Google Scholar 

  11. Newcomb M, Hollenberg PF, Coon MJ (2003) Arch Biochem Biophys 409:72–79

    Article  CAS  PubMed  Google Scholar 

  12. Ortiz de Montellano PR, De Voss JJ (2002) Nat Prod Rep 19:477–493

    Article  PubMed  Google Scholar 

  13. Watanabe Y (2001) J Biol Inorg Chem 6:846–856

    Article  CAS  PubMed  Google Scholar 

  14. Shaik S, Cohen S, de Visser SP, Sharma PK, Kumar D, Kozuch S, Ogliaro F, Danovich D (2004) Eur J Inorg Chem 207–226

  15. Vaz ADN, Pernecky SJ, Raner GM, Coon MJ (1996) Proc Natl Acad Sci USA 93:4644–4648

    Article  CAS  PubMed  Google Scholar 

  16. Vaz ADN, McGinnity DF, Coon MJ (1998) Proc Natl Acad Sci USA 95:3555–3560

    Article  CAS  PubMed  Google Scholar 

  17. Newcomb M, Shen R, Choi S-Y, Toy PH, Hollenberg PF, Vaz ADN, Coon MJ (2000) J Am Chem Soc 122:2677–2686

    Article  CAS  Google Scholar 

  18. Toy PH, Newcomb M, Coon MJ, Vaz ADN (1998) J Am Chem Soc 120:9718–9719

    Article  CAS  Google Scholar 

  19. Newcomb M, Aebisher D, Shen R, Chandrasena REP, Hollenberg PF, Coon MJ (2003) J Am Chem Soc 125:6064–6065

    Article  CAS  PubMed  Google Scholar 

  20. Jin S, Makris TM, Bryson TA, Sligar SG, Dawson JH (2003) J Am Chem Soc 125:3406–3407

    Article  CAS  PubMed  Google Scholar 

  21. Volz TJ, Rock DA, Jones JP (2002) J Am Chem Soc 124:9724–9725

    Article  CAS  PubMed  Google Scholar 

  22. Vatsis KP, Coon MJ (2002) Arch Biochem Biophys 397:119–129

    Article  CAS  PubMed  Google Scholar 

  23. Groves JT, Haushalter RC, Nakamura M, Nemo TE, Evans BJ (1981) J Am Chem Soc 103:2884–2886

    CAS  Google Scholar 

  24. Wertz DL, Valentine JS (2000) Struct Bonding 97:37–60

    CAS  Google Scholar 

  25. McCandlish E, Miksztal AR, Nappa M, Sprenger AQ, Valentine JS, Stong JD, Spiro TG (1980) J Am Chem Soc 102:4268–4271

    CAS  Google Scholar 

  26. VanAtta RB, Strouse CE, Hanson LK, Valentine JS (1987) J Am Chem Soc 109:1425–1434

    Google Scholar 

  27. Chishiro T, Shimazaki Y, Tani F, Tachi Y, Naruta Y, Karasawa S, Hayami S, Maeda Y (2003) Angew Chem Int Ed 42:2788–2791

    Article  CAS  Google Scholar 

  28. Khenkin AM, Shteinman AA (1984) J Chem Soc Chem Commun 1219–1220

  29. Miksztal AR, Valentine JS (1984) Inorg Chem 23:3548–3552

    CAS  Google Scholar 

  30. Sisemore MF, Burstyn JN, Valentine JS (1996) Angew Chem Int Ed Engl 35:206–208

    Article  CAS  Google Scholar 

  31. Selke M, Valentine JS (1998) J Am Chem Soc 120:2652–2653

    Article  CAS  Google Scholar 

  32. Goto Y, Wada S, Morishima I, Watanabe Y (1998) J Inorg Biochem 69:241–247

    Article  CAS  Google Scholar 

  33. Groves JT, Nemo TE, Myers RS (1979) J Am Chem Soc 101:1032–1033

    CAS  Google Scholar 

  34. Groves JT, Nemo TE (1983) J Am Chem Soc 105:5786–5791

    CAS  Google Scholar 

  35. Groves JT, McClusky GA, White RE, Coon MJ (1978) Biochem Biophys Res Commun 81:154–160

    CAS  PubMed  Google Scholar 

  36. Groves JT (1985) J Chem Educ 62:928–931

    CAS  Google Scholar 

  37. Kadkhodayan S, Coulter ED, Maryniak DM, Bryson TA, Dawson JH (1995) J Biol Chem 270:28042–28048

    Article  CAS  PubMed  Google Scholar 

  38. Manchester JI, Dinnocenzo JP, Higgins L, Jones JP (1997) J Am Chem Soc 119:5069–5070

    Article  CAS  Google Scholar 

  39. Gelb MH, Heimbrook DC, Mälkönen P, Sligar SG (1982) Biochemistry 21:370–377

    CAS  PubMed  Google Scholar 

  40. White RE, Miller JP, Favreau LV, Bhattacharyya A (1986) J Am Chem Soc 108:6024–6031

    CAS  Google Scholar 

  41. Traylor TG, Hill KW, Fann W-P, Tsuchiya S, Dunlap BE (1992) J Am Chem Soc 114:1308–1312

    CAS  Google Scholar 

  42. Groves JT, Subramanian DV (1984) J Am Chem Soc 106:2177–2181

    CAS  Google Scholar 

  43. Oliw EH, Brodowsky ID, Hörnsten L, Hamberg M (1993) Arch Biochem Biophys 300:434–439

    Article  CAS  PubMed  Google Scholar 

  44. Fujii H (2002) Coord Chem Rev 226:51–60

    Article  CAS  Google Scholar 

  45. Dolphin D, Traylor TG, Xie LY (1997) Acc Chem Res 30:251–259

    Article  CAS  Google Scholar 

  46. Goh YM, Nam W (1999) Inorg Chem 38:914–920

    Article  CAS  PubMed  Google Scholar 

  47. Dawson JH (1988) Science 240:433–439

    CAS  PubMed  Google Scholar 

  48. Gross Z, Nimri S (1994) Inorg Chem 33:1731–1732

    CAS  Google Scholar 

  49. Groves JT, Watanabe Y (1987) Inorg Chem 26:785–786

    CAS  Google Scholar 

  50. Watanabe Y, Yamaguchi K, Morishima I, Takehira K, Shimizu M, Hayakawa T, Orita H (1991) Inorg Chem 30:2581–2582

    CAS  Google Scholar 

  51. Machii K, Watanabe Y, Morishima I (1995) J Am Chem Soc 117:6691–6697

    CAS  Google Scholar 

  52. Nam W, Lim MH, Lee HJ, Kim C (2000) J Am Chem Soc 122:6641–6647

    Article  CAS  Google Scholar 

  53. Nam W, Jin SW, Lim MH, Ryu JY, Kim C (2002) Inorg Chem 41:3647–3652

    Article  CAS  PubMed  Google Scholar 

  54. Suzuki N, Higuchi T, Nagano T (2002) J Am Chem Soc 124:9622–9628

    Article  CAS  PubMed  Google Scholar 

  55. Collman JP, Chien AS, Eberspacher TA, Brauman JI (2000) J Am Chem Soc 122:11098–11100

    Article  CAS  Google Scholar 

  56. Nam W, Lim MH, Moon SK, Kim C (2000) J Am Chem Soc 122:10805–10809

    Article  CAS  Google Scholar 

  57. Nam W, Lee HJ, Oh SY, Kim C, Jang HG (2000) J Inorg Biochem 80:219–225

    Article  CAS  PubMed  Google Scholar 

  58. Wadhwani P, Mukherjee M, Bandyopadhyay D (2001) J Am Chem Soc 123:12430–12431

    Article  CAS  PubMed  Google Scholar 

  59. Khavasi HR, Davarani SSH, Safari N (2002) J Mol Catal A 188:115–122

    Article  CAS  Google Scholar 

  60. Adam W, Roschmann KJ, Saha-Möller CR, Seebach D (2002) J Am Chem Soc 124:5068–5073

    Article  CAS  PubMed  Google Scholar 

  61. Collman JP, Zeng L, Brauman JI (2004) Inorg Chem 43:2672–2679

    Article  CAS  PubMed  Google Scholar 

  62. Wang SH, Mandimutsira BS, Todd R, Ramdhanie B, Fox JP, Goldberg DP (2004) J Am Chem Soc 126:18–19

    CAS  PubMed  Google Scholar 

  63. Collman JP, Zeng L, Decréau RA (2003) Chem Commun 2974–2975

  64. Nanthakumar A, Goff HM (1990) J Am Chem Soc 112:4047–4049

    CAS  Google Scholar 

  65. Yamaguchi K, Watanabe Y, Morishima I (1992) J Chem Soc Chem Commun 1721–1723

  66. Murakami T, Yamaguchi K, Watanabe Y, Morishima I (1998) Bull Chem Soc Jpn 71:1343–1353

    CAS  Google Scholar 

  67. Ogliaro F, de Visser SP, Groves JT, Shaik S (2001) Angew Chem Int Ed 40:2874–2878

    Article  CAS  Google Scholar 

  68. Dey A, Ghosh A (2002) J Am Chem Soc 124:3206–3207

    Article  CAS  PubMed  Google Scholar 

  69. Nam W, Choi SK, Lim MH, Rohde J-U, Kim I, Kim J, Kim C, Que L Jr (2003) Angew Chem Int Ed 42:109–111

    Article  CAS  Google Scholar 

  70. Weiss R, Gold A, Trautwein AX, Terner J (2000) In: Kadish KM, Smith KM, Guilard R, (eds) The porphyrin handbook, vol 4. Academic, New York, pp 65–96

  71. Chin D-H, La Mar GN, Balch AL (1980) J Am Chem Soc 102:5945–5947

    CAS  Google Scholar 

  72. Groves JT, Gross Z, Stern MK (1994) Inorg Chem 33:5065–5072

    CAS  Google Scholar 

  73. Groves JT, Stern MK (1988) J Am Chem Soc 110:8628–8638

    CAS  Google Scholar 

  74. Nam W, Park S-E, Lim IK, Lim MH, Hong J, Kim J (2003) J Am Chem Soc 125:14674–14675

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of Korea through the Creative Research Initiative Program and the Korea Science and Engineering Foundation (R02-2003-000-10047-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wonwoo Nam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nam, W., Ryu, Y.O. & Song, W.J. Oxidizing intermediates in cytochrome P450 model reactions. J Biol Inorg Chem 9, 654–660 (2004). https://doi.org/10.1007/s00775-004-0577-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-004-0577-5

Keywords

Navigation