Skip to main content
Log in

Probing the role of the divalent metal ion in uteroferrin using metal ion replacement and a comparison to isostructural biomimetics

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Purple acid phosphatases (PAPs) are a group of heterovalent binuclear metalloenzymes that catalyze the hydrolysis of phosphomonoesters at acidic to neutral pH. While the metal ions are essential for catalysis, their precise roles are not fully understood. Here, the Fe(III)Ni(II) derivative of pig PAP (uteroferrin) was generated and its properties were compared with those of the native Fe(III)Fe(II) enzyme. The k cat of the Fe(III)Ni(II) derivative (approximately 60 s−1) is approximately 20% of that of native uteroferrin, and the Ni(II) uptake is considerably faster than the reconstitution of full enzymatic activity, suggesting a slow conformational change is required to attain optimal reactivity. An analysis of the pH dependence of the catalytic properties of Fe(III)Ni(II) uteroferrin indicates that the μ-hydroxide is the likely nucleophile. Thus, the Ni(II) derivative employs a mechanism similar to that proposed for the Ga(III)Zn(II) derivative of uteroferrin, but different from that of the native enzyme, which uses a terminal Fe(III)-bound nucleophile to initiate catalysis. Binuclear Fe(III)Ni(II) biomimetics with coordination environments similar to the coordination environment of uteroferrin were generated to provide both experimental benchmarks (structural and spectroscopic) and further insight into the catalytic mechanism of hydrolysis. The data are consistent with a reaction mechanism employing an Fe(III)-bound terminal hydroxide as a nucleophile, similar to that proposed for native uteroferrin and various related isostructural biomimetics. Thus, only in the uteroferrin-catalyzed reaction are the precise details of the catalytic mechanism sensitive to the metal ion composition, illustrating the significance of the dynamic ligand environment in the protein active site for the optimization of the catalytic efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Wilcox DE (1996) Chem Rev 96:2435–2458

    Article  PubMed  CAS  Google Scholar 

  2. Mitić N, Smith SJ, Neves A, Guddat LW, Gahan LR, Schenk G (2006) Chem Rev 106:3338–3363

    Article  PubMed  Google Scholar 

  3. Bernhardt PV, Schenk G, Wilson GJ (2004) Biochemistry 43:10387–10392

    Article  PubMed  CAS  Google Scholar 

  4. Wang DL, Holz RC, David SS, Que L, Stankovich MT (1991) Biochemistry 30:8187–8194

    Article  PubMed  CAS  Google Scholar 

  5. Schenk G, Guddat LW, Ge Y, Carrington LE, Hume DA, Hamilton S, de Jersey J (2000) Gene 250:117–125

    Article  PubMed  CAS  Google Scholar 

  6. Beck JL, McConachie LA, Summors AC, Arnold WN, de Jersey J, Zerner B (1986) Biochim Biophys Acta 869:61–68

    CAS  Google Scholar 

  7. Schenk G, Ge Y, Carrington LE, Wynne CJ, Searle IR, Carroll BJ, Hamilton S, de Jersey J (1999) Arch Biochem Biophys 370:183–189

    Article  PubMed  CAS  Google Scholar 

  8. Durmus A, Eicken C, Sift BH, Kratel A, Kappi R, Hütterman J, Krebs B (1999) Eur J Biochem 260:709–716

    Article  PubMed  CAS  Google Scholar 

  9. Schenk G, Boutchard CL, Carrington LE, Noble CJ, Moubaraki B, Murray KS, de Jersey J, Hanson GR, Hamilton S (2001) J Biol Chem 276:19084–19088

    Article  PubMed  CAS  Google Scholar 

  10. Antanaitis BC, Aisen P, Lilienthal HR (1983) J Biol Chem 258:3166–3172

    PubMed  CAS  Google Scholar 

  11. Averill BA, Davis JC, Burman S, Zirino T, Sanders-Loehr J, Loehr TM, Sage JT, Debrunner PG (1987) J Am Chem Soc 109:3760–3767

    Article  CAS  Google Scholar 

  12. Yang Y-S, McCormick JM, Solomon EI (1997) J Am Chem Soc 119:11832–11842

    Article  CAS  Google Scholar 

  13. Smoukov SK, Quaroni L, Wang X, Doan PE, Hoffman BM, Que L Jr (2002) J Am Chem Soc 124:2595–2603

    Article  PubMed  CAS  Google Scholar 

  14. Schenk G, Gahan LR, Carrington LE, Mitić N, Valizadeh M, Hamilton SE, de Jersey J, Guddat LW (2005) Proc Natl Acad Sci USA 102:273–278

    Article  PubMed  CAS  Google Scholar 

  15. Smith SJ, Casellato A, Hadler KS, Mitić N, Riley MJ, Bortoluzzi AJ, Szpoganicz B, Schenk G, Neves A, Gahan LR (2007) J Biol Inorg Chem (in press)

  16. Cox RS, Schenk G, Mitić N, Gahan LR, Hengge AC (2007) J Am Chem Soc 129:9550–9551

    Article  PubMed  CAS  Google Scholar 

  17. Elliott TW, Mitić N, Gahan LR, Guddat LW, Schenk G (2006) J Braz Chem Soc 17:1558–1565

    Article  CAS  Google Scholar 

  18. Funhoff EG, Klaasen CHW, Samyn B, Van Beeumen J, Averill BA (2001) Chembiochem 2:355–363

    Article  PubMed  CAS  Google Scholar 

  19. Mitić N, Valizadeh M, Leung EWW, de Jersey J, Hamilton S, Hume DA, Cassady AI, Schenk G (2005) Arch Biochem Biophys 439:154–464

    Article  PubMed  Google Scholar 

  20. Beck JL, Keough DT, de Jersey J, Zerner B (1984) Biochim Biophys Acta 791:357–363

    PubMed  CAS  Google Scholar 

  21. Beck JL, Durack MCA, Hamilton SE, de Jersey J (1999) J Inorg Biochem 73:245–252

    Article  PubMed  CAS  Google Scholar 

  22. Beck JL, de Jersey J, Zerner B, Hendrich MP, Debrunner PG (1988) J Am Chem Soc 110:3317–3318

    Article  CAS  Google Scholar 

  23. Beck JL, McArthur MJ, de Jersey J, Zerner B (1988) Inorg Chim Acta 153:39–44

    Article  CAS  Google Scholar 

  24. Neves A, de Brito MA, Vencato I, Drago V, Griesar K, Haase W (1996) Inorg Chem 35:2360–2368

    Article  PubMed  CAS  Google Scholar 

  25. Karsten P, Neves A, Bortoluzzi AJ, Lanznaster M, Drago V (2002) Inorg Chem 41:4624–4626

    Article  PubMed  CAS  Google Scholar 

  26. Lanznaster M, Neves A, Bortoluzzi AJ, Aires VVE, Szpoganicz B, Terenzi H, Severino PC, Fuller JM, Drew SC, Gahan LR, Hanson GR, Riley MJ, Schenk G (2005) J Biol Inorg Chem 10:319–332

    Article  PubMed  CAS  Google Scholar 

  27. Lanznaster M, Neves A, Bortoluzzi AJ, Szpoganicz B, Schwingel E (2002) Inorg Chem 41:5641–5643

    Article  PubMed  CAS  Google Scholar 

  28. Neves A, Lanznaster M, Bortoluzzi AJ, Peralta RA, Casellato A, Castellano EE, Herrald P, Riley MJ, Schenk G (2007) J Am Chem Soc 129:7486–7487

    Article  PubMed  CAS  Google Scholar 

  29. Batista SC, Neves A, Bortoluzzi AJ, Vencato I, Peralta RA, Szpoganicz B, Aires VVE, Terenzi H, Severino PC (2003) Inorg Chem Commun 6:1161–1165

    Article  CAS  Google Scholar 

  30. Karsten P, Neves A, Bortoluzzi AJ, Strahle J, Maichle-Mossmer C (2002) Inorg Chem Commun 5:434–438

    Article  CAS  Google Scholar 

  31. Neves A, de Brito MA, Drago V, Griesar K, Haase W (1995) Inorg Chim Acta 237:131–135

    Article  CAS  Google Scholar 

  32. Campbell HD, Dionysius DA, Keough DT, Wilson BE, de Jersey J, Zerner B (1978) Biochem Biophys Res Commun 82:615–620

    Article  PubMed  CAS  Google Scholar 

  33. Martell AE, Montekaitis RJ (1992) Determination and use of stability constants, 2nd edn. VCD, New York

    Google Scholar 

  34. Spek AL (1996) HELENA: CAD-4 data reduction program. University of Utrecht

    Google Scholar 

  35. Spek AL (1997) PLATON: molecular geometry and plotting program. University of Utrecht

    Google Scholar 

  36. North AC, Phillips DC, Matthews FS (1968) Acta Crystallogr Sect A 24:351–359

    Article  Google Scholar 

  37. Sheldrick GM (1997) SHELXS-97: program for the solution of crystal structures. University of Göttingen

    Google Scholar 

  38. Sheldrick GM (1997) SHELXL-97: program for the refinement of crystal structures. University of Göttingen, Germany

    Google Scholar 

  39. Ravel B, Newville M (2005) J Synchrotron Radiat 12:537–541

    Article  PubMed  CAS  Google Scholar 

  40. Valizadeh M, Schenk G, Nash K, Oddie GW, Guddat LW, Hume DA, de Jersey J, Burke J, Terrence R., Hamilton S (2004) Arch Biochem Biophys 424:154–162

    Article  PubMed  CAS  Google Scholar 

  41. Thirumavalavan M, Akilan P, Kandaswamy M (2004) Supramol Chem 16:495–504

    Article  CAS  Google Scholar 

  42. Merkx M, Averill BA (1999) J Am Chem Soc 121:6683–6689

    Article  CAS  Google Scholar 

  43. Huheey JE (1983) Inorganic chemistry, 3rd edn. HarperCollins, New York

  44. Segel IH (1975) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady-state enzyme systems. Wiley, New York

    Google Scholar 

  45. Guddat LW, McAlpine AS, Hume D, Hamilton S, de Jersey J, Martin JL (1999) Structure 7:757–767

    Article  PubMed  CAS  Google Scholar 

  46. Merkx M, Pinkse MWH, Averill BA (1999) Biochemistry 38:9914–9925

    Article  PubMed  CAS  Google Scholar 

  47. Funhoff EG, Wang Y, Andersson G, Averill BA (2005) FEBS J 272:2968–2977

    Article  PubMed  CAS  Google Scholar 

  48. Klabunde T, Sträter N, Fröhlich R, Witzel H, Krebs B (1996) J Mol Biol 259:737–748

    Article  PubMed  CAS  Google Scholar 

  49. Twitchett MB, Schenk G, Aquino MAS, Yiu DTY, Lau T-C, Sykes AG (2002) Inorg Chem 41:5787–5794

    Article  PubMed  CAS  Google Scholar 

  50. Holman TR, Juarez-Garcia C, Hendrich MP, Que L Jr, Munck E (1990) J Am Chem Soc 112:7611–7618

    Article  CAS  Google Scholar 

  51. Ghiladi M, Jensen KB, Jiang J, McKenzie CJ, Morup S, Sotofte I, Ulstrup J (1999) J Chem Soc Dalton Trans 2675–2681

  52. Ghiladi M, McKenzie CJ, Meier A, Powell AK, Ulstrup J, Wocadlo S (1997) J Chem Soc Dalton Trans 4011–4018

  53. O’Connor CJ (1982) Prog Inorg Chem 29:203

    Article  CAS  Google Scholar 

  54. Kahn O (1993) Molecular magnetism. VCH, New York

    Google Scholar 

  55. Mitić N, Saleh L, Schenk G, Bollinger JM Jr, Solomon EI (2003) J Am Chem Soc 125:11200–11201

    Article  PubMed  Google Scholar 

  56. Mitić N, Clay MD, Saleh L, Bollinger JM Jr, Solomon EI (2007) J Am Chem Soc 129:9049–9065

    Article  PubMed  Google Scholar 

  57. Solomon EI, Neidig ML, Schenk G (2003) In: Lever ABP (ed) Comprehensive coordination chemistry II, vol 2. Fundamentals: physical methods, theoretical analysis, and case studies. Elsevier, Amsterdam, pp 339–349

  58. Riley MJ (2005) MCDfit: aspectroscopic tool for multiple curve deconvolution and fitting. http://sourceforge.net/projects/mcdfit/

  59. Anjos A, Bortoluzzi AJ, Osorio RE, Peralta RA, Friedermann GR, Mangrich AS, Neves A (2005) Inorg Chem Commun 8:249–253

    Article  CAS  Google Scholar 

  60. Lambert E, Chabut B, Chardon-Noblat S, Deronzier A, Chottard G, Bousseksou A, Tuchagues J-P, Laugier J, Bardet M, Latour J-M (1997) J Am Chem Soc 119:9424–9437

    Article  CAS  Google Scholar 

  61. Wilkins RG (1990) Kinetics and mechanisms of reactions of transition metal complexes, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

Download references

Acknowledgments

This work was funded by a grant from the Australian Research Council (DP0558652) and CNPq, FAPESC from Brazil. X-ray absorption data collection was performed at the Australian National Beamline Facility (ANBF), Tsukuba, Japan, with support from the Australian Synchrotron Research Program, funded by the Commonwealth of Australia under the Major National Research Facilities Program. We also thank G. Foran for help in data collection. The guidance of Paul Bernhardt in electrochemical measurements with Uf and the assistance of Keith Murray (Monash University, VIC, Australia) with collection of the susceptibility data are kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gerhard Schenk or Ademir Neves.

Electronic supplementary material

Below is the link to the electronic supplementary material.

775_2007_305_MOESM1_ESM.pdf

Supporting information available: magnetochemical data for complexes 1 and 3 (Fig. S1), as well as cyclic voltammograms for all three biomimetics (Fig. S2) are available. Saturation kinetics plots and the pH dependence of the catalytic rates for the biomimetics are shown in Figs. S3 and S4. One table of spectroscopic data is also included (Table S1). (PDF 307 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schenk, G., Peralta, R.A., Batista, S.C. et al. Probing the role of the divalent metal ion in uteroferrin using metal ion replacement and a comparison to isostructural biomimetics. J Biol Inorg Chem 13, 139–155 (2008). https://doi.org/10.1007/s00775-007-0305-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-007-0305-z

Keywords

Navigation