Skip to main content
Log in

The removal of a disulfide bridge in CotA-laccase changes the slower motion dynamics involved in copper binding but has no effect on the thermodynamic stability

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The contribution of the disulfide bridge in CotA-laccase from Bacillus subtilis is assessed with respect to the enzyme’s functional and structural properties. The removal of the disulfide bond by site-directed mutagenesis, creating the C322A mutant, does not affect the spectroscopic or catalytic properties and, surprisingly, neither the long-term nor the thermodynamic stability parameters of the enzyme. Furthermore, the crystal structure of the C322A mutant indicates that the overall structure is essentially the same as that of the wild type, with only slight alterations evident in the immediate proximity of the mutation. In the mutant enzyme, the loop containing the C322 residue becomes less ordered, suggesting perturbations to the substrate binding pocket. Despite the wild type and the C322A mutant showing similar thermodynamic stability in equilibrium, the holo or apo forms of the mutant unfold at faster rates than the wild-type enzyme. The picosecond to nanosecond time range dynamics of the mutant enzyme was not affected as shown by acrylamide collisional fluorescence quenching analysis. Interestingly, copper uptake or copper release as measured by the stopped-flow technique also occurs more rapidly in the C322A mutant than in the wild-type enzyme. Overall the structural and kinetic data presented here suggest that the disulfide bridge in CotA-laccase contributes to the conformational dynamics of the protein on the microsecond to millisecond timescale, with implications for the rates of copper incorporation into and release from the catalytic centres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lindley PF (2001) In: Bertini I, Sigel A, Sigel H (eds) Handbook on metalloproteins. Dekker, New York, pp 763–811

    Google Scholar 

  2. Messerschmidt A (1997) Multi-copper oxidases. World Science Press, Singapore

    Book  Google Scholar 

  3. Fernandes AT, Damas JM, Todorovic S, Huber R, Baratto MC, Pogni R, Soares CM, Martins LO (2010) FEBS J 277:3176–3189

    Article  PubMed  CAS  Google Scholar 

  4. Fernandes AT, Soares CM, Pereira MM, Huber R, Grass G, Martins LO (2007) FEBS J 274:2683–2694

    Article  PubMed  CAS  Google Scholar 

  5. Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T, Jones GH, Henriques AO (2002) J Biol Chem 277:18849–18859

    Article  PubMed  CAS  Google Scholar 

  6. Durao P, Chen Z, Fernandes AT, Hildebrandt P, Murgida DH, Todorovic S, Pereira MM, Melo EP, Martins LO (2008) J Biol Inorg Chem 13:183–193

    Article  PubMed  CAS  Google Scholar 

  7. Fernandes AT, Martins LO, Melo EP (2009) Biochim Biophys Acta 1794:75–83

    PubMed  CAS  Google Scholar 

  8. Agostinelli E, Cervoni L, Giartosio A, Morpurgo L (1995) Biochem J 306:697–702

    PubMed  CAS  Google Scholar 

  9. Savini I, D’Alessio S, Giartosio A, Morpurgo L, Avigliano L (1990) Eur J Biochem 190:491–495

    Article  PubMed  CAS  Google Scholar 

  10. Sedlak E, Wittung-Stafshede P (2007) Biochemistry 46:9638–9644

    Article  PubMed  CAS  Google Scholar 

  11. Sedlak E, Ziegler L, Kosman DJ, Wittung-Stafshede P (2008) Proc Natl Acad Sci USA 105:19258–19263

    Article  PubMed  CAS  Google Scholar 

  12. Koroleva OV, Stepanova EV, Binukov VI, Timofeev VP, Pfeil W (2001) Biochim Biophys Acta 1547:397–407

    Article  PubMed  CAS  Google Scholar 

  13. Durao P, Bento I, Fernandes AT, Melo EP, Lindley PF, Martins LO (2006) J Biol Inorg Chem 11:514–526

    Article  PubMed  CAS  Google Scholar 

  14. Brockwell DJ (2007) Biochem Soc Trans 35:1564–1568

    Article  PubMed  CAS  Google Scholar 

  15. Pace CN, Hebert EJ, Shaw KL, Schell D, Both V, Krajcikova D, Sevcik J, Wilson KS, Dauter Z, Hartley RW, Grimsley GR (1998) J Mol Biol 279:271–286

    Article  PubMed  CAS  Google Scholar 

  16. Radestock SG H (2008) Eng Life Sci 5:507–522

    Article  Google Scholar 

  17. Zhou XX, Wang YB, Pan YJ, Li WF (2008) Amino Acids 34:25–33

    Article  PubMed  CAS  Google Scholar 

  18. Alcaraz LA, Jimenez B, Moratal JM, Donaire A (2005) Protein Sci 14:1710–1722

    Article  PubMed  CAS  Google Scholar 

  19. Pozdnyakova I, Wittung-Stafshede P (2001) Biochemistry 40:13728–13733

    Article  PubMed  CAS  Google Scholar 

  20. Wittung-Stafshede P (2004) Inorg Chem 43:7926–7933

    Article  PubMed  CAS  Google Scholar 

  21. Bento I, Martins LO, Gato Lopes G, Armenia Carrondo M, Lindley PF (2005) Dalton Trans 3507–3513

  22. Aasa R, Vanngard T (1975) J Magn Reson 19:308–315

    CAS  Google Scholar 

  23. Leslie A (1992) CCP4 Newsl Protein Crystallogr 26

  24. Leslie AG (2006) Acta Crystallogr D 62:48–57

    Article  PubMed  Google Scholar 

  25. Collaborative Computational Project, Number 4 (1994) Acta Crystallogr D 50:760–763

    Google Scholar 

  26. Vagin A, Teplyakov A (1997) J Appl Crystallogr 30:1022–1025

    Article  CAS  Google Scholar 

  27. Murshudov GN, Vagin AA, Lebedev A, Wilson KS, Dodson EJ (1999) Acta Crystallogr D 55:247–255

    Article  PubMed  CAS  Google Scholar 

  28. Emsley P, Cowtan K (2004) Acta Crystallogr D Biol Crystallogr 60:2126–2132

    Article  PubMed  Google Scholar 

  29. Bento I, Silva CS, Chen Z, Martins LO, Lindley PF, Soares CM (2010) BMC Struct Biol 10:28

    Article  PubMed  Google Scholar 

  30. Brenner AJ, Harris ED (1995) Anal Biochem 226:80–84

    Article  PubMed  CAS  Google Scholar 

  31. Solomon EI, Sundaram UM, Machonkin TE (1996) Chem Rev 96:2563–2606

    Article  PubMed  CAS  Google Scholar 

  32. Moser CC, Dutton PL (1996) In: Bendall DS (ed) Protein electron transfer. Bios Scientific Publishers, Oxford, pp 1–21

    Google Scholar 

  33. Enguita FJ, Martins LO, Henriques AO, Carrondo MA (2003) J Biol Chem 278:19416–19425

    Article  PubMed  CAS  Google Scholar 

  34. Karlin KD, Zhu ZY, Karlin S (1997) Proc Natl Acad Sci USA 94:14225–14230

    Article  PubMed  CAS  Google Scholar 

  35. Durao P, Chen Z, Silva CS, Soares CM, Pereira MM, Todorovic S, Hildebrandt P, Bento I, Lindley PF, Martins LO (2008) Biochem J 412:339–346

    Article  PubMed  CAS  Google Scholar 

  36. Eftink MR, Ghiron CA (1977) Biochemistry 16:5546–5551

    Article  PubMed  CAS  Google Scholar 

  37. Somogyi B, Punyiczki M, Hedstrom J, Norman JA, Prendergast FG, Rosenberg A (1994) Biochim Biophys Acta 1209:61–68

    Article  PubMed  CAS  Google Scholar 

  38. Calhoun DB, Vanderkooi JM, Holtom GR, Englander SW (1986) Proteins 1:109–115

    Article  PubMed  CAS  Google Scholar 

  39. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer/Plenum, New York

    Google Scholar 

  40. Zhang J, Matthews CR (1998) Biochemistry 37:14891–14899

    Article  PubMed  CAS  Google Scholar 

  41. Leckner J, Bonander N, Wittung-Stafshede P, Malmstrom BG, Karlsson BG (1997) Biochim Biophys Acta 1342:19–27

    Article  PubMed  CAS  Google Scholar 

  42. Pozdnyakova I, Guidry J, Wittung-Stafshede P (2001) Arch Biochem Biophys 390:146–148

    Article  PubMed  CAS  Google Scholar 

  43. Bah A, Garvey LC, Ge J, Di Cera E (2006) J Biol Chem 281:40049–40056

    Article  PubMed  CAS  Google Scholar 

  44. Cawthorn TR, Poulsen BE, Davidson DE, Andrews D, Hill BC (2009) Biochemistry 48:4448–4454

    Article  PubMed  CAS  Google Scholar 

  45. Choi DW, Zea CJ, Do YS, Semrau JD, Antholine WE, Hargrove MS, Pohl NL, Boyd ES, Geesey GG, Hartsel SC, Shafe PH, McEllistrem MT, Kisting CJ, Campbell D, Rao V, de la Mora AM, Dispirito AA (2006) Biochemistry 45:1442–1453

    Article  PubMed  CAS  Google Scholar 

  46. Taniguchi T, Ichimura K, Kawashima S, Yamamura T, Tachi’iri Y, Satake K, Kihara H (1990) Eur Biophys J 18:1–8

    Article  PubMed  CAS  Google Scholar 

  47. Hellman NE, Kono S, Mancini GM, Hoogeboom AJ, De Jong GJ, Gitlin JD (2002) J Biol Chem 277:46632–46638

    Article  PubMed  CAS  Google Scholar 

  48. Blackburn NJ, Ralle M, Hassett R, Kosman DJ (2000) Biochemistry 39:2316–2324

    Article  PubMed  CAS  Google Scholar 

  49. Galli I, Musci G, Bonaccorsi di Patti MC (2004) J Biol Inorg Chem 9:90–95

    Article  PubMed  CAS  Google Scholar 

  50. Kataoka K, Kitagawa R, Inoue M, Naruse D, Sakurai T, Huang HW (2005) Biochemistry 44:7004–7012

    Article  PubMed  CAS  Google Scholar 

  51. Luque I, Leavitt SA, Freire E (2002) Annu Rev Biophys Biomol Struct 31:235–256

    Article  PubMed  CAS  Google Scholar 

  52. Davis-Kaplan SR, Askwith CC, Bengtzen AC, Radisky D, Kaplan J (1998) Proc Natl Acad Sci USA 95:13641–13645

    Article  PubMed  CAS  Google Scholar 

  53. Kwok EY, Severance S, Kosman DJ (2006) Biochemistry 45:6317–6327

    Article  PubMed  CAS  Google Scholar 

  54. Shi X, Stoj C, Romeo A, Kosman DJ, Zhu Z (2003) J Biol Chem 278:50309–50315

    Article  PubMed  CAS  Google Scholar 

  55. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Instituto de Biotecnologia e Química Fina and J.S. Cabral are acknowledged for the use of the Pi-Star 180 instrument for stopped-flow kinetic measurements. The European Synchrotron Radiation Facility in Grenoble, France, and the macromolecular crystallography staff are sincerely acknowledged for provision of synchrotron radiation facilities and support. This work was supported by project grants from Fundação para a Ciência e Tecnologia (FCT), Portugal (POCI/BIO/57083/2004 and PTDC/QUI/73027/2006), and the European Comission (BIORENEW-FP6-2004-NMP-NI-4/026456). A.T.F and C.S.S. hold Ph.D. fellowships (SFRH/BD/31444/2006 and SFRH/BD/40586/2007, respectively) from FCT, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eduardo Pinho Melo or Lígia O. Martins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernandes, A.T., Pereira, M.M., Silva, C.S. et al. The removal of a disulfide bridge in CotA-laccase changes the slower motion dynamics involved in copper binding but has no effect on the thermodynamic stability. J Biol Inorg Chem 16, 641–651 (2011). https://doi.org/10.1007/s00775-011-0768-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-011-0768-9

Keywords

Navigation