Skip to main content
Log in

Coordination of peroxide to the CuM center of peptidylglycine α-hydroxylating monooxygenase (PHM): structural and computational study

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Many bioactive peptides, such as hormones and neuropeptides, require amidation at the C terminus for their full biological activity. Peptidylglycine α-hydroxylating monooxygenase (PHM) performs the first step of the amidation reaction—the hydroxylation of peptidylglycine substrates at the Cα position of the terminal glycine. The hydroxylation reaction is copper- and O2-dependent and requires 2 equiv of exogenous reductant. The proposed mechanism suggests that O2 is reduced by two electrons, each provided by one of two nonequivalent copper sites in PHM (CuH and CuM). The characteristics of the reduced oxygen species in the PHM reaction and the identity of the reactive intermediate remain uncertain. To further investigate the nature of the key intermediates in the PHM cycle, we determined the structure of the oxidized form of PHM complexed with hydrogen peroxide. In this 1.98-Å-resolution structure (hydro)peroxide binds solely to CuM in a slightly asymmetric side-on mode. The O–O interatomic distance of the copper-bound ligand is 1.5 Å, characteristic of peroxide/hydroperoxide species, and the Cu–O distances are 2.0 and 2.1 Å. Density functional theory calculations using the first coordination sphere of the CuM active site as a model system show that the computed energies of the side-on L3CuM(II)–O2 2− species and its isomeric, end-on structure L3CuM(I)–O2 ·− are similar, suggesting that both these intermediates are significantly populated within the protein environment. This observation has important mechanistic implications. The geometry of the observed side-on coordinated peroxide ligand in L3CuM(II)O2 2− is in good agreement with the results of a hybrid quantum mechanical–molecular mechanical optimization of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

Abbreviations

AIM:

Atoms in molecules

DFT:

Density functional theory

MM:

Molecular mechanical

oxPHM:

Oxidized form of peptidylglycine α-hydroxylating monooxygenase

oxPHMcc:

Oxidized catalytic core of peptidylglycine α-hydroxylating monooxygenase

PAM:

Peptidylglycine α-amidating monooxygenase

PAL:

Peptidyl-α-hydroxyglycine α-amidating lyase

PDB:

Protein Data Bank

PHM:

Peptidylglycine α-hydroxylating monooxygenase

PHMcc:

Catalytic core of peptidylglycine α-hydroxylating monooxygenase

QM:

Quantum mechanical

References

  1. Merkler DJ, Kulathila R, Consalvo AP, Young SD, Ash DE (1992) Biochemistry 31:7282–7288

    Article  PubMed  CAS  Google Scholar 

  2. Noguchi M, Seino H, Kochi H, Okamoto H, Tanaka T, Hirama M (1992) Biochem J 283(Pt 3):883–888

    PubMed  CAS  Google Scholar 

  3. Prigge ST, Mains RE, Eipper BA, Amzel LM (2000) Cell Mol Life Sci 57:1236–1259

    Article  PubMed  CAS  Google Scholar 

  4. Eipper BA, Milgram SL, Husten EJ, Yun HY, Mains RE (1993) Protein Sci 2:489–497

    Article  PubMed  CAS  Google Scholar 

  5. Katopodis AG, May SW (1990) Biochemistry 29:4541–4548

    Article  PubMed  CAS  Google Scholar 

  6. Suzuki K, Ohta M, Okamoto M, Nishikawa Y (1993) Eur J Biochem 213:93–98

    Article  PubMed  CAS  Google Scholar 

  7. Glauder J, Ragg H, Rauch J, Engels JW (1990) Biochem Biophys Res Commun 169:551–558

    Article  PubMed  CAS  Google Scholar 

  8. Ouafik L, May V, Saffen DW, Eipper BA (1990) Mol Endocrinol 4:1497–1505

    Article  PubMed  CAS  Google Scholar 

  9. Eipper BA, Stoffers DA, Mains RE (1992) Annu Rev Neurosci 15:57–85

    Article  PubMed  CAS  Google Scholar 

  10. Czyzyk TA, Ning Y, Hsu MS, Peng B, Mains RE, Eipper BA, Pintar JE (2005) Dev Biol 287:301–313

    Article  PubMed  CAS  Google Scholar 

  11. Jiang N, Kolhekar AS, Jacobs PS, Mains RE, Eipper BA, Taghert PH (2000) Dev Biol 226:118–136

    Article  PubMed  CAS  Google Scholar 

  12. Prigge ST, Kolhekar AS, Eipper BA, Mains RE, Amzel LM (1997) Science 278:1300–1305

    Article  PubMed  CAS  Google Scholar 

  13. Prigge ST, Eipper BA, Mains RE, Amzel LM (2004) Science 304:864–867

    Article  PubMed  CAS  Google Scholar 

  14. Prigge ST, Kolhekar AS, Eipper BA, Mains RE, Amzel LM (1999) Nat Struct Biol 6:976–983

    Article  PubMed  CAS  Google Scholar 

  15. Siebert X, Eipper BA, Mains RE, Prigge ST, Blackburn NJ, Amzel LM (2005) Biophys J 89:3312–3319

    Article  PubMed  CAS  Google Scholar 

  16. Jaron S, Blackburn NJ (1999) Biochemistry 38:15086–15096

    Article  PubMed  CAS  Google Scholar 

  17. Rhames FC, Murthy NN, Karlin KD, Blackburn NJ (2001) J Biol Inorg Chem 6:567–577

    Article  PubMed  CAS  Google Scholar 

  18. Jaron S, Mains RE, Eipper BA, Blackburn NJ (2002) Biochemistry 41:13274–13282

    Article  PubMed  CAS  Google Scholar 

  19. Chen P, Bell J, Eipper BA, Solomon EI (2004) Biochemistry 43:5735–5747

    Article  PubMed  CAS  Google Scholar 

  20. Eipper BA, Quon AS, Mains RE, Boswell JS, Blackburn NJ (1995) Biochemistry 34:2857–2865

    Article  PubMed  CAS  Google Scholar 

  21. Freeman JC, Nayar PG, Begley TP, Villafranca JJ (1993) Biochemistry 32:4826–4830

    Article  PubMed  CAS  Google Scholar 

  22. Blackburn NJ, Rhames FC, Ralle M, Jaron S (2000) J Biol Inorg Chem 5:341–353

    Article  PubMed  CAS  Google Scholar 

  23. Francisco WA, Blackburn NJ, Klinman JP (2003) Biochemistry 42:1813–1819

    Article  PubMed  CAS  Google Scholar 

  24. Francisco WA, Knapp MJ, Blackburn NJ, Klinman JP (2002) J Am Chem Soc 124:8194–8195

    Article  PubMed  CAS  Google Scholar 

  25. Francisco WA, Merkler DJ, Blackburn NJ, Klinman JP (1998) Biochemistry 37:8244–8252

    Article  PubMed  CAS  Google Scholar 

  26. Tian G, Berry JA, Klinman JP (1994) Biochemistry 33:226–234

    Article  PubMed  CAS  Google Scholar 

  27. Freeman JC, Villafranca JJ (1993) J Am Chem Soc 115:4923–4924

    Article  CAS  Google Scholar 

  28. Crespo A, Marti MA, Roitberg AE, Amzel LM, Estrin DA (2006) J Am Chem Soc 128:12817–12828

    Article  PubMed  CAS  Google Scholar 

  29. Klinman JP (2006) J Biol Chem 281:3013–3016

    Article  PubMed  CAS  Google Scholar 

  30. Yoshizawa K, Kihara N, Kamachi T, Shiota Y (2006) Inorg Chem 45:3034–3041

    Article  PubMed  CAS  Google Scholar 

  31. Evans JP, Ahn K, Klinman JP (2003) J Biol Chem 278:49691–49698

    Article  PubMed  CAS  Google Scholar 

  32. Decker A, Solomon EI (2005) Curr Opin Chem Biol 9:152–163

    Article  PubMed  CAS  Google Scholar 

  33. Chen P, Solomon EI (2004) J Am Chem Soc 126:4991–5000

    Article  PubMed  CAS  Google Scholar 

  34. Kamachi T, Kihara N, Shiota Y, Yoshizawa K (2005) Inorg Chem 44:4226–4236

    Article  PubMed  CAS  Google Scholar 

  35. Messerschmidt A, Luecke H, Huber R (1993) J Mol Biol 230:997–1014

    Article  PubMed  CAS  Google Scholar 

  36. Bento I, Martins LO, Gato Lopes G, Armenia Carrondo M, Lindley PF (2005) Dalton Trans 3507–3513

  37. Shin DS, Didonato M, Barondeau DP, Hura GL, Hitomi C, Berglund JA, Getzoff ED, Cary SC, Tainer JA (2009) J Mol Biol 385:1534–1555

    Article  PubMed  CAS  Google Scholar 

  38. Kolhekar AS, Keutmann HT, Mains RE, Quon AS, Eipper BA (1997) Biochemistry 36:10901–10909

    Article  PubMed  CAS  Google Scholar 

  39. Otwinowski Z, Minor W (1997) Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  40. Murshudov GN, Vagin AA, Dodson EJ (1997) Acta Crystallogr D Biol Crystallogr 53:240–255

    Article  PubMed  CAS  Google Scholar 

  41. Collaborative Computational Project N (1994) Acta Crystallogr D Biol Crystallogr 50: 760–763

    Google Scholar 

  42. Frisch MJ et al (2004) Gaussian 03. Gaussian, Wallingford

    Google Scholar 

  43. Henkelman G, Arnaldsson A, Jonsson A (2006) Comput Mater Sci 36:354–360

    Article  Google Scholar 

  44. Crespo A, Scherlis DA, Marti MA, Ordejon P, Roitberg AE, Estrin DA (2003) J Phys Chem B 107:13728–13736

    Article  CAS  Google Scholar 

  45. Soler JM, Artacho E, Gale JD, Garcia A, Junquera J, Ordejon P, Sanchez-Portal D (2002) J Phys Condens Matter 2745–2779

  46. Marti MA, Scherlis DA, Doctorovich FA, Ordejon P, Estrin DA (2003) J Biol Inorg Chem 8:595–600

    Article  PubMed  CAS  Google Scholar 

  47. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  PubMed  CAS  Google Scholar 

  48. Wang J, Cieplak P, Kollman P (2000) J Comput Chem 21:1049–1074

    Article  CAS  Google Scholar 

  49. Eichinger M, Tavan P, Hutter J, Parrinello M (1999) J Chem Phys 110:10452–10467

    Article  CAS  Google Scholar 

  50. Gubelmann MH, Williams AF (1983) Struct Bonding (Berl) 55:1

    Article  CAS  Google Scholar 

  51. Chufan EE, Prigge ST, Siebert X, Eipper BA, Mains RE, Amzel LM (2010) J Am Chem Soc 132:15565–15572

    Article  PubMed  CAS  Google Scholar 

  52. Bauman AT, Yukl ET, Alkevich K, McCormack AL, Blackburn NJ (2006) J Biol Chem 281:4190–4198

    Article  PubMed  CAS  Google Scholar 

  53. Hrycay EG, Gustafsson JA, Ingelman-Sundberg M, Ernster L (1976) Eur J Biochem 61:43–52

    Article  PubMed  CAS  Google Scholar 

  54. Davydov R, Makris TM, Kofman V, Werst DE, Sligar SG, Hoffman BM (2001) J Am Chem Soc 123:1403–1415

    Article  PubMed  CAS  Google Scholar 

  55. Froland WA, Andersson KK, Lee SK, Liu Y, Lipscomb JD (1992) J Biol Chem 267:17588–17597

    PubMed  CAS  Google Scholar 

  56. Wolfe MD, Lipscomb JD (2003) J Biol Chem 278:829–835

    Article  PubMed  CAS  Google Scholar 

  57. Gherman BF, Tolman WB, Cramer CJ (2006) J Comput Chem 27:1950–1961

    Article  PubMed  CAS  Google Scholar 

  58. Miller SM, Klinman JP (1985) Biochemistry 24:2114–2127

    Article  PubMed  CAS  Google Scholar 

  59. Osako T, Nagatomo S, Tachi Y, Kitagawa T, Itoh S (2002) Angew Chem Int Ed 41:4325–4328

    Article  CAS  Google Scholar 

  60. Mirica LM, Ottenwaelder X, Stack TD (2004) Chem Rev 104:1013–1045

    Article  PubMed  CAS  Google Scholar 

  61. Chen P, Fujisawa K, Solomon EI (2000) J Am Chem Soc 122:10177–10193

    Article  CAS  Google Scholar 

  62. Wada A, Harata M, Hasegawa K, Jitsukawa H, Masuda M, Mukai M, Kitagawa T, Einaga H (1998) Angew Chem Int Ed 37:798–799

    Article  CAS  Google Scholar 

  63. Maiti D, Lucas HR, Sarjeant AA, Karlin KD (2007) J Am Chem Soc 129:6998–6999

    Article  PubMed  CAS  Google Scholar 

  64. Maiti D, Sarjeant AA, Karlin KD (2007) J Am Chem Soc 129:6720–6721

    Article  PubMed  CAS  Google Scholar 

  65. Wilmot CM (2003) Biochem Soc Trans 31:493–496

    Article  PubMed  CAS  Google Scholar 

  66. Wilmot CM, Hajdu J, McPherson MJ, Knowles PF, Phillips SE (1999) Science 286:1724–1728

    Article  PubMed  CAS  Google Scholar 

  67. Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M (2006) J Biol Chem 281:8981–8990

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Jean Jakoncic and Vivian Stojanoff (beamline X6A of the National Synchrotron Light Source, Brookhaven National Laboratory) for assistance in the collection of X-ray diffraction data. We thank Sandra Gabelli and Mario Bianchet for assistance in the purification of the protein and crystallographic experiments. This work was supported by National Science Foundation grant MCB-920288 and National Institutes of Health grant DK-32949.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Mario Amzel.

Additional information

An interactive 3D complement page in Proteopedia is available at http://proteopedia.org/w/Journal:JBIC:18

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudzka, K., Moreno, D.M., Eipper, B. et al. Coordination of peroxide to the CuM center of peptidylglycine α-hydroxylating monooxygenase (PHM): structural and computational study. J Biol Inorg Chem 18, 223–232 (2013). https://doi.org/10.1007/s00775-012-0967-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-012-0967-z

Keywords

Navigation