Skip to main content
Log in

Effects of the ruthenium-based drug NAMI-A on the roles played by TGF-β1 in the metastatic process

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The ruthenium-based drug NAMI-A, characterised by its selectivity against solid tumour metastases, promotes TGF-β1-dependent fibrosis and the reduction of the release of MMPs in the primary tumour. The aim of the study was to examine the interaction of NAMI-A with TGF-β1 in the process of metastasis formation. NAMI-A (1) affects the secretion of TGF-β1 in metastatic MDA-MB-231 cells rather than in non-tumorigenic HBL-100 cells, (2) prevails over TGF-β1 with regard to the invasive capacity of the treated cells, and (3) contrasts integrin-dependent migration stimulated by TGF-β1. It, thus, appears that the effects of NAMI-A on cell invasion and migration are best summarised as an interference with TGF-β1 and a reduction of its activity in these events. At a molecular level, the similar activity of NAMI-A and TGF-β1 on RhoA GTPase supports its interaction with cell surface integrins while TGF-β1 can activate it by interaction with its TGFβR receptor. The inhibition of TGF-β1-induced migration of MDA-MB-231 cells by NAMI-A cannot simply be attributed to a modulation of the Smad2 and p38MAPK pathways. In conclusion, the effects of NAMI-A on the biological role of TGF-β1 in cancer metastasis are insufficient to attribute the responsibility for the anti-metastatic activity of the ruthenium-based drug to this target alone.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

BSA:

Bovine serum albumin

CHK1:

Checkpoint kinase 1

CMF-DPBS:

Calcium and Magnesium Free Dulbecco’s Phosphate Buffered Saline

ECM:

Extracellular matrix

DMEM:

Dulbecco’s modified Eagle’s medium

DPBS:

Dulbecco’s Phosphate Buffered Saline

FBS:

Foetal bovine serum

GRP78:

78 kDa glucose-regulated protein

LB:

Lysis buffer

MMPs:

Matrix metallo proteinases

NAMI-A:

Imidazolium trans-imidazoletetrachlororuthenate

ROS:

Reactive oxygen species

SRB:

Sulforhodamine B

TCA:

Trichloro acetic acid

TGF-β1:

Transforming growth factor beta 1

TIMPs:

Tissue inhibitors of MMPs

TMB:

3,3′,5,5′-Tetramethylbenzidine

References

  1. Ang WH, Casini A, Sava G, Dyson PJ (2011) J Organomet Chem 696:989–998

    Article  CAS  Google Scholar 

  2. Antonarakis ES, Emadi A (2010) Cancer Chemother Pharmacol 66:1–9

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bergamo A, Gaiddon C, Schellens JHM, Beijnen JH, Sava G (2012) J Inorg Biochem 106:90–99

    Article  CAS  PubMed  Google Scholar 

  4. Novakova O, Chen H, Vrana O, Rodger A, Sadler PJ, Brabec V (2003) Biochemistry 42:11544–11554

    Article  CAS  PubMed  Google Scholar 

  5. Novakova O, Kasparkova J, Bursova V, Hofr C, Vojtiskova M, Chen H et al (2005) Chem Biol 12:121–129

    Article  CAS  PubMed  Google Scholar 

  6. Ang WH, Dyson PJ (2006) Eur J Inorg Chem 20:3989–4192

    Google Scholar 

  7. Bergamo A, Sava G (2007) Dalton Trans 13:1267–1272

    Article  PubMed  Google Scholar 

  8. Meggers E (2007) Curr Opin Chem Biol 11:287–292

    Article  CAS  PubMed  Google Scholar 

  9. Smalley KS, Contractor R, Haass NK, Kulp AN, Atilla-Gokcumen GE, Williams DS et al (2007) Cancer Res 67:209–217

    Article  CAS  PubMed  Google Scholar 

  10. Meng X, Levyva ML, Jenny M, Gross I, Benosman S, Fricker B et al (2009) Cancer Res 69:5458–5466

    Article  CAS  PubMed  Google Scholar 

  11. Kapitza S, Jakupec MA, Uhl M, Keppler BK, Marian B (2005) Cancer Lett 226:115–121

    Article  CAS  PubMed  Google Scholar 

  12. Kapitza S, Pongratz M, Jakupec MA, Heffeter P, Berger W, Lackinger L et al (2005) J Cancer Res Clin Oncol 131:101–110

    Article  CAS  PubMed  Google Scholar 

  13. Trondl R, Heffeter P, Kowol CR, Jakupec MA, Berger W, Keppler BK (2014) Chem Sci 5:2925–2932

    Article  CAS  Google Scholar 

  14. Zhang LH, Zhang X (2010) J Cell Biochem 110:1299–1305

    Article  CAS  PubMed  Google Scholar 

  15. Baerga R, Cobb J, Ogden A, Sheshbaradan H (2012). In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; Chicago, IL. Philadelphia (PA): AACR; Cancer Res, 72(8 Suppl): Abstract nr 3838. doi:1538-7445.AM2012-3838

  16. Sava G, Zorzet S, Turrin C, Vita F, Soranzo MR, Zabucchi G et al (2003) Clin Cancer Res 9:1898–1905

    CAS  PubMed  Google Scholar 

  17. Zorzet S, Bergamo A, Cocchietto M, Sorc A, Gava B, Alessio E et al (2000) J Pharmacol Exp Ther 295:927–933

    CAS  PubMed  Google Scholar 

  18. Sanna B, Debidda M, Pintus G, Tadolini B, Posadino AM, Bennardini F et al (2002) Arch Biochem Biophys 403:209–218

    Article  CAS  PubMed  Google Scholar 

  19. Vacca A, Bruno M, Boccarelli A, Coluccia M, Ribatti D, Bergamo A et al (2002) Br J Cancer 86:993–998

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Morbidelli L, Donnini S, Filippi S, Messori L, Piccioli F, Orioli P et al (2003) Br J Cancer 88:1484–1491

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Sava G, Capozzi I, Clerici K, Gagliardi R, Alessio E, Mestroni G (1998) Clin Exp Metastasis 16:371–379

    Article  CAS  PubMed  Google Scholar 

  22. Magnarin M, Bergamo A, Carotenuto ME, Zorzet S, Sava G (2000) Anticancer Res 20:29–39

    Google Scholar 

  23. Pacor S, Zorzet S, Cocchietto M, Bacac M, Vadori M, Turrin C et al (2004) J Pharmacol Exp Ther 310:737–744

    Article  CAS  PubMed  Google Scholar 

  24. Bergamo A, Zorzet S, Gava B, Sorc A, Alessio E, Iengo E et al (2000) Anticancer Drugs 11:665–672

    Article  CAS  PubMed  Google Scholar 

  25. Sava G, Frausin F, Cocchietto M, Vita F, Podda E, Spessotto P et al (2004) Eur J Cancer 40:1383–1396

    Article  CAS  PubMed  Google Scholar 

  26. Bergamo A, Delfino R, Casarsa C, Sava G (2012) Anti-Cancer Agents Med Chem 12:949–958

    Article  CAS  Google Scholar 

  27. Descot A, Oskarsson T (2013) Exp Cell Res 319:1679–1686

    Article  CAS  PubMed  Google Scholar 

  28. Taddei ML, Giannoni E, Comito G, Chiarugi P (2013) Cancer Lett 341:80–96

    Article  CAS  PubMed  Google Scholar 

  29. Pakyari M, Farrokhi A, Maharlooei MK, Ghahary A (2013) Adv Wound Care 2:215–224

    Article  Google Scholar 

  30. Usunier B, Benderitter M, Tamarat R, Chapel A (2014) Stem Cells Int 2014:340257

    Article  PubMed Central  PubMed  Google Scholar 

  31. Tian M, Neil JR, Schiemann WP (2011) Cell Signal 23:951–962

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Casarsa C, Mischis MT, Sava G (2004) J Inorg Biochem 98:1648–1654

    Article  CAS  PubMed  Google Scholar 

  33. Mestroni G, Alessio E, Sava G (1998). International Patent PCT C 07F 15/00 A6K 31/28, WO 98/00431

  34. Skehan P, Soreng R, Scudiero D, Monks A, McMahon J, Vistica D et al (1990) J Natl Cancer Inst 82:1107–1112

    Article  CAS  PubMed  Google Scholar 

  35. Albini A, Iwamoto Y, Kleinman K, Martin GR, Aaronson SA, Kozlowski JM et al (1987) Cancer Res 47:3229–3245

    Google Scholar 

  36. Kueng W, Silber E, Eppenberger U (1989) Anal Biochem 182:16–19

    Article  CAS  PubMed  Google Scholar 

  37. Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  38. Levina A, Mitra A, Lay PA (2009) Metallomics 1:458–470

    Article  CAS  PubMed  Google Scholar 

  39. van Rijt S, Sadler PJ (2009) Drug Discov Today 14:1089–1097

    Article  PubMed Central  PubMed  Google Scholar 

  40. Meggers E (2011) Angew Chem Int Ed 50:2442–2448

    Article  CAS  Google Scholar 

  41. Sava G, Bergamo A, Zorzet S, Gava B, Casarsa C, Cocchietto M et al (2002) Eur J Cancer 38:427–435

    Article  CAS  PubMed  Google Scholar 

  42. Ravera M, Baracco S, Cassino C, Colangelo D, Bagni G, Sava G et al (2004) J Inorg Biochem 98:984–990

    Article  CAS  PubMed  Google Scholar 

  43. Bacac M, Hotze ACG, van der Schilden K, Haasnoot JG, Pacor S, Alessio E et al (2004) J Inorg Biochem 98:402–412

    Article  CAS  PubMed  Google Scholar 

  44. Groessl M, Tsybin YO, Hartinger CG, Keppler BK, Dyson PJ (2010) J Biol Inorg Chem 15:677–688

    Article  CAS  PubMed  Google Scholar 

  45. Webb MI, Walsby CJ (2013) Metallomics 5:1624–1633

    Article  CAS  PubMed  Google Scholar 

  46. Frausin F, Scarcia V, Cocchietto M, Furlani A, Serli B, Alessio E et al (2005) J Pharmacol Exp Ther 313:227–233

    Article  CAS  PubMed  Google Scholar 

  47. Catalano V, Turdo A, Di Franco S, Dieli F, Todaro M, Stassi G (2013) Semin Cancer Biol 23:522–532

    Article  CAS  PubMed  Google Scholar 

  48. Quile DF, Joyce JA (2013) Nat Med 19:1423–1437

    Article  Google Scholar 

  49. Drabsch Y, ten Dijke P (2011) J Mammary Gland Biol Neoplasia 16:97–108

    Article  PubMed Central  PubMed  Google Scholar 

  50. Catteau X, Simon P, Noel JC (2014) BMC Cancer 14:499

    Article  PubMed Central  PubMed  Google Scholar 

  51. Fulda S, Gorman AM, Hori O, Samali A (2010) Int J Cell Biol 2010:214074

    PubMed Central  PubMed  Google Scholar 

  52. Rademaker-Lakhai JM, van den Bongard D, Pluim D, Beijnen JH, Schellens JH (2004) Clin Cancer Res 10:3717–3727

    Article  CAS  PubMed  Google Scholar 

  53. Leijen S, Burgers SA, Baas P, Pluim D, Tibben M, van Werkhoven E, Alessio E, Sava G, Beijnen JH, Schellens JH (2015) Invest New Drugs 33:201–214

    Article  CAS  PubMed  Google Scholar 

  54. Sava G, Capozzi I, Bergamo A, Gagliardi R, Cocchietto M, Masiero L et al (1996) Int J Cancer 68:60–66

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bergamo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 147 kb)

Supplementary material 2 (PDF 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brescacin, L., Masi, A., Sava, G. et al. Effects of the ruthenium-based drug NAMI-A on the roles played by TGF-β1 in the metastatic process. J Biol Inorg Chem 20, 1163–1173 (2015). https://doi.org/10.1007/s00775-015-1297-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-015-1297-8

Keywords

Navigation