Skip to main content
Log in

Are cucurbiturils better drug carriers for bent metallocenes? Insights from theory

  • Original Paper
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Bent metallocenes (BM) have anti-tumor properties but they face a serious drug efficacy problem due to poor aqueous solubility and rapid hydrolysis under physiological conditions. These two problems can be fixed by encapsulating them in host molecules such as cyclodextrin (CD), cucurbituril (CB) etc. Experimentally, CD-BM, CB-BM host–guest complexes have been investigated to check the efficiency of the drug delivery and efficiency of the encapsulated drug. CB has been reported to be a better host than CD but the reasons for this has not been figured out. This can be done by finding out the mechanism of binding and the nature of the binding forces in both the inclusion complexes. This is exactly done here by performing a DFT study at BP86/TZP level on CB-BM host–guest systems. For comparison CD-BM with β-cyclodextrin as host have been studied. Four BMs (Cp2MCl2, M=Ti, V, Nb, Mo) and their corresponding cations (Cp2MCl+, Cp2M2+) are chosen as guests and they are encapsulated into cucurbit-[6]-uril (CB[6]) and cucurbit-[7]-uril(CB[7]) host systems. Computations reveal that CB[7] accommodates well the BMs over CB[6] due to their larger cavity size and also CB[7] is found to be a better host than β-cyclodextrin. BMs enter vertically rather than horizontally into the CB cavity. The reversible binding of BMs within CB[7] is controlled by various non-bonding interactions and mainly by hydrogen bonding between the portal oxygen atoms and Cp protons as revealed by QTAIM analysis. On the other hand, the interaction between the wall nitrogen atoms in CB[7] and chlorine atoms attached to the metal in BM strengthens the M–Cl bonds that prevents rapid hydrolysis of M–Cl and M–Cp bonds saving the drug. Comparatively, BMs experience less electrostatic attraction and more Pauli repulsion within β-cyclodextrin cavity and this affects the drug binding with CD. This makes β-cyclodextrin a less suitable drug carrier for BMs than CBs. Among the four BMs, niobocene binds strongly and titanocene binds weakly with CBs. EDA clearly shows that all the interactions between the guest and host are non-covalent in nature and electrostatic interactions outperform high-repulsion resulting in stable complexes. Cations form stronger complexes than neutral BMs. FMO analysis reveals that neutral BMs are less reactive compared to their cations and complexes are more reactive in CB[6] environment due to excess strain. QTAIM analysis helps to bring out the newer insights in these types of host–guest systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gasser G, Ott I, Metzler-Nolte N (2010) J Med Chem 54:3–25

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dowling CM, Claffey J, Cuffe S, Fichtner I, Pampillon C, Sweeney NJ, Strohfeldt K, Watson RG, Tacke M (2008) Lett Drug Des Discov 5:141–144

    Article  CAS  Google Scholar 

  3. Hogan M, Cotter J, Claffey J, Gleeson B, Wallis D, O’Shea D, Tacke M (2008) Helv Chim Acta 91:1787–1797

    Article  CAS  Google Scholar 

  4. Hogan M, Gleeson B, Tacke M (2010) Lett Drug Des Discov 7:310–317

    Article  CAS  Google Scholar 

  5. Strohfeldt K, Tacke M (2008) Chem Soc Rev 37:1174–1187

    Article  CAS  PubMed  Google Scholar 

  6. Pampillón C, Sweeney NJ, Strohfeldt K, Tacke M (2007) J Organomet Chem 692:2153–2159

    Article  Google Scholar 

  7. Senthilnathan D, Vaideeswaran S, Venuvanalingam P (2011) JMol Model 17:465–475

    Article  CAS  Google Scholar 

  8. Rahel PE, Yvonne H, Stefan S (2017) CHIMIA Int J Chem 71:120–123. https://doi.org/10.2533/chimia.2017.120

    Article  Google Scholar 

  9. Cini M, Bradshaw TD, Woodward S (2017) Chem Soc Rev 46:1040–1051

    Article  CAS  PubMed  Google Scholar 

  10. Tinoco AD, Saxena M, Sharma S, Noinaj N, Delgado Y (2016) J Am Chem Soc 138:5659–5665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Senthilnathan D, Kalaiselvan A, Vedha SA, Venuvanalingam P (2014) RSC Adv 4:9556–9563

    Article  CAS  Google Scholar 

  12. Bonnet G, Kubicki MM, Moise C, Lazzaroni R, Salvadori P, Vitulli G (1992) Organometallics 11:964–967

    Article  CAS  Google Scholar 

  13. Collins RA, Russell AF, Scott RTW, Bernardo R, Doremaele G, Berthoud A, Mountford R (2017) Organometallics 36:2167–2181

    Article  CAS  Google Scholar 

  14. Musgrave RA, Russell AD, Hayward DW, Whittell GR, Lawrence PG, Gates PJ, Green JC, Manners I (2017) Nat Chem 9:743–750

    Article  CAS  Google Scholar 

  15. Erker G (1999) Chem Soc Rev 28:307–314

    Article  CAS  Google Scholar 

  16. Erker G, Kehr G, Fröhlich R (2004) J Organomet Chem 689:1402–1412

    Article  CAS  Google Scholar 

  17. Gasser G, Metzler-Nolte N (2012) Curr Opin Chem Biol 16:84–91

    Article  CAS  PubMed  Google Scholar 

  18. Green JC (1998) Chem Soc Rev 27:263–272

    Article  CAS  Google Scholar 

  19. Erxleben A (2005) Inorg Chem 44:1082–1094

    Article  CAS  PubMed  Google Scholar 

  20. Güette-Fernández JR, Meléndez E, Maldonado-Rojas R, Ortega-Zúñiga C, Olivero-Verbel J, Parés-Matos EI (2017) J Mol Graph Model 75:250–265

    Article  PubMed  Google Scholar 

  21. Abeysinghe PM, Harding MM (2007) Dalton Trans. 3474–3482. https://doi.org/10.1039/B707440A

  22. Toney JH, Marks TJ (1985) J Am Chem Soc 107:947–953

    Article  CAS  Google Scholar 

  23. Murray JH, Harding MM (1994) J Med Chem 37:1936–1941

    Article  CAS  PubMed  Google Scholar 

  24. Ravera M, Cassino C, Monti E, Gariboldi M, Osella D (2005) J Inorg Biochem 99:2264–2269

    Article  CAS  PubMed  Google Scholar 

  25. Loza-Rosas SA, Saxena M, Delgado Y, Gaur K, Pandrala M, Tinoco AD (2017) Metallomics 9:346–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kuo LY, Kanatzidis MG, Sabat M, Tipton AL, Marks TJ (1991) J Am Chem Soc 113:9027–9045

    Article  CAS  Google Scholar 

  27. Waern JB, Dillon CD, Harding MM (2005) J Med Chem 48:2093–2099

    Article  CAS  PubMed  Google Scholar 

  28. Waern JB, Harding MM (2004) J Organomet Chem 689:4655–4668

    Article  CAS  Google Scholar 

  29. Waern JB, Harding MM (2004) Inorg Chem 43:206–213

    Article  CAS  PubMed  Google Scholar 

  30. Mock WL, Shih NY (1986) J Org Chem 51:4440–4446

    Article  CAS  Google Scholar 

  31. Garmann D, Warnecke A, Kalayda GV, Kratz F, Jaehde U (2008) J Control Release 131:100–106

    Article  CAS  PubMed  Google Scholar 

  32. Dibama HM, Clarot I, Fontanay S, Salem AB, Mourer M, Finance C, Duval RE, Regnouf-de-Vains JB (2009) Bio Org Med Chem Lett 19:2679–2682

    Article  CAS  Google Scholar 

  33. Gasser G, Ott I, Metzler-Nolte N (2011) J Med Chem 54:3–25

    Article  CAS  PubMed  Google Scholar 

  34. Xu F, Li H, Luo YL, Tang W (2017) ACS Appl Mater Interfaces 9:5181–5192

    Article  CAS  PubMed  Google Scholar 

  35. Venkataramanan NS (2017) Suvitha. J Phys Chem B 121:4733–4744

    Article  CAS  PubMed  Google Scholar 

  36. Uekama K, Hirayama F, Irie T (1998) Chem Rev 98:2045–2076

    Article  CAS  PubMed  Google Scholar 

  37. Buck DP, Abeysinghe PM, Cullinane C, Day AI, Collins JC, Harding MM (2008) Dalton Trans. 2328–2334. https://doi.org/10.1039/B718322D

  38. Pan S, Mondal S, Chattaraj PK (2013) New J Chem 37:2492–2499

    Article  CAS  Google Scholar 

  39. Barooah N, Kunwar A, Khurana R, Bhasikuttan AC, Mohanty J (2017) Chem Asian J 12:122–131

    Article  CAS  PubMed  Google Scholar 

  40. Abdolmaleki A, Ghasemi F, Ghasemi JB (2017) Chem Biol Drug Des 89:257–268

    Article  CAS  PubMed  Google Scholar 

  41. Ahmed SA, Maity B, Duley SS, Seth D (2017) J Photochem Photobiol B 168:132–141

    Article  CAS  PubMed  Google Scholar 

  42. Rafael RC, Colilla M, Vallet-Regí M (2017) Expert Opin Drug Deliv 14:229–243

    Article  Google Scholar 

  43. Pereira CC, Nolasco M, Braga SS, Paz FAA, Ribeiro-Claro P, Pillinger M, Goncalves IS (2007) Organometallics 26:4220–4956

    Article  CAS  Google Scholar 

  44. Metzler-Nolte N (2010) “Biomedical applications of organometal–peptide conjugates” Medicinal organometallic chemistry. Springer, Berlin, pp 195–217

    Book  Google Scholar 

  45. Yang P, Guo M (1999) Coord Chem Rev 185:189–211

    Article  Google Scholar 

  46. Chen X, Zhou L (2010) J Mol Struct THEOCHEM 940:45–49

    Article  CAS  Google Scholar 

  47. Mokdsi G, Harding MM (1998) J Organomet Chem 565:29–35

    Article  CAS  Google Scholar 

  48. Liu S, Ruspic C, Mukhopadhyay P, Chakrabarti S, Zavalij PY, Isaacs L (2005) J Am Chem Soc 127:15959–15967

    Article  CAS  PubMed  Google Scholar 

  49. Jeon YJ, Kim SY, Ko YH, Sakamoto S, Yamaguchi K, Kim K (2005) Org Biomol Chem 3:2122–2125

    Article  CAS  PubMed  Google Scholar 

  50. Kim J, Ahn Y, Park KM, Kim Y, Ko YH, Oh DH, Kim K (2007) Angew Chem Int Ed 46:7393–7395

    Article  CAS  Google Scholar 

  51. Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L (2005) Angew Chem Int Ed 44:4844–4870

    Article  CAS  Google Scholar 

  52. Gossens C, Tavernelli I, Rothlisberger U (2005) Chimia Int J Chem 59:81–84

    Article  CAS  Google Scholar 

  53. McLaughlin ML, Cronan JM Jr, Schaller TR, Snelling RD (1990) J Am Chem Soc 112:8949–8952

    Article  CAS  Google Scholar 

  54. Mokdsi G, Harding MM (2001) J Inorg Biochem 83:205–209

    Article  CAS  PubMed  Google Scholar 

  55. Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, van Gisbergen SJ, Snijders JG, Ziegler T (2001) J Comput Chem 22:931–967

    Article  Google Scholar 

  56. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  57. Perdew JP (1986) Phys Rev B 33:8822–8824

    Article  CAS  Google Scholar 

  58. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  59. Valeev EF, Schaefer HF (1998) J Chem Phys 108:7197–7201

    Article  CAS  Google Scholar 

  60. van Lenthe E, Ehlers A, Baerends EJ (1999) J Chem Phys 110:8943–8953

    Article  Google Scholar 

  61. Wolff S, Ziegler T, Van Lenthe E, Baerends E (1999) J Chem Phys 110:7689–7698

    Article  CAS  Google Scholar 

  62. Morokuma K (1971) J Chem Phys 55:1236–1244

    Article  CAS  Google Scholar 

  63. Ziegler T, Rauk A (1977) Theor Chim Acta 46:1–10

    Article  CAS  Google Scholar 

  64. Hopffgarten MV, Frenking G (2012) WIRESs Comput Mol Sci 2:43 ((Eds. 121))

    Article  Google Scholar 

  65. Biegler-König F, Schönbohm J (2002) J Comput Chem 23:1489–1494

    Article  PubMed  Google Scholar 

  66. Vedha SA, Solomon RV, Venuvanalingam P (2013) J Phys Chem A 117:3529–3538

    Article  CAS  PubMed  Google Scholar 

  67. Senthilnathan D, Venuvanalingam P (2011) Eur J Inorg Chem 18:2842–2855

    Article  Google Scholar 

  68. Bader RFW (1998) J Phys Chem A 102:7314–7323

    Article  CAS  Google Scholar 

  69. Bader RFW (1985) Acc Chem Res 18:9–15

    Article  CAS  Google Scholar 

  70. Bader RFW (2009) J Phys Chem A 113:10391–10396

    Article  CAS  PubMed  Google Scholar 

  71. Bader RFW (1990) Atoms in molecules—a quantum theory. Oxford University Press, New York

    Google Scholar 

  72. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2004) Gaussian 03, Revision C02. Gaussian, Inc., Wallingford

    Google Scholar 

  73. Sundararajan M (2013) J Phys Chem B 117:13409–13417

    Article  CAS  PubMed  Google Scholar 

  74. Sundararajan M, Vivek S, Bandyopadhyay T, Ghosh SK (2012) J Phys Chem A 116:4388–4395

    Article  CAS  PubMed  Google Scholar 

  75. Sadhu B, Sundararajan M, Bandyopadhyay T (2016) Inorg Chem 55:598–609

    Article  CAS  PubMed  Google Scholar 

  76. Sundararajan M, Solomon RV, Ghosh SK, Venuvanalingam P (2011) RSC Adv 1:1333–1341

    Article  CAS  Google Scholar 

  77. Shahi A, Arunan E (2014) Phys Chem Chem Phys 16:22935–22952

    Article  CAS  PubMed  Google Scholar 

  78. Braga SS, Goncalves IS, Pillinger M, Ribeiro-Claro P, Teixeira-Dias JJC (2001) J Organomet Chem 623:11–16

    Article  Google Scholar 

  79. Braga SS, Marques MM, Sousa JB, Pillinger M, Teixeira-Dias JJC, Goncalves IS (2005) J Organomet Chem 690:2905–2912

    Article  CAS  Google Scholar 

  80. Braga SS (2010) Curr Org Chem 14:1356–1361

    Article  CAS  Google Scholar 

  81. Pereira CCL, Nolasco M, Braga SS, Almeida Paz FZ, Ribeiro-Claro P, Pillinger M, Goncüalves IS (2007) Organomettalics 26:4220–4228

    Article  CAS  Google Scholar 

  82. Riviş A, Hădărugă NG, Gârban Z, Hădărugă DI (2012) Chem Cen J 6:129–139

    Google Scholar 

  83. Saenger W, Jacob J, Gessler K, Steiner T, Hoffmann D, Sanbe H, Koizumi K, Smith SM, Takaha T (1998) Chem Rev 98:1787–1802

    Article  CAS  PubMed  Google Scholar 

  84. Hedges AR (1998) Chem Rev 98:2035–2044

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

P. V. thanks, Council for Scientific and Industrial Research (CSIR), India for the award of EmeritusScientistship (Ref. no. 21(0936)/12/EMR–II). DS acknowledges the support and continuous encouragement from Centre for Research and development, PRIST University, Vallam campus, Thanjavur. RVS acknowledges the support and encouragement from the Department of Chemistry and the management of Madras Christian College (Autonomous), Chennai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhurairajan Senthilnathan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 721 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthilnathan, D., Solomon, R.V., Kiruthika, S. et al. Are cucurbiturils better drug carriers for bent metallocenes? Insights from theory. J Biol Inorg Chem 23, 413–423 (2018). https://doi.org/10.1007/s00775-018-1547-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1547-7

Keywords

Navigation