Skip to main content

Advertisement

Log in

Potential applications of engineered nanoparticles in medicine and biology: an update

  • Minireview
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Nanotechnology advancements have led to the development of its allied fields, such as nanoparticle synthesis and their applications in the field of biomedicine. Nanotechnology driven innovations have given a hope to the patients as well as physicians in solving the complex medical problems. Nanoparticles with a size ranging from 0.2 to 100 nm are associated with an increased surface to volume ratio. Moreover, the physico-chemical and biological properties of nanoparticles can be modified depending on the applications. Different nanoparticles have been documented with a wide range of applications in various fields of medicine and biology including cancer therapy, drug delivery, tissue engineering, regenerative medicine, biomolecules detection, and also as antimicrobial agents. However, the development of stable and effective nanoparticles requires a profound knowledge on both physico-chemical features of nanomaterials and their intended applications. Further, the health risks associated with the use of engineered nanoparticles needs a serious attention.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Feynman RP (1992) There’s plenty of room at the bottom [data storage]. J Microelectromechanical Syst 1:60–66

    Google Scholar 

  2. Rudramurthy GR, Swamy MK, Sinniah UR, Ghasemzadeh A (2016) Nanoparticles: alternatives against drug-resistant pathogenic microbes. Molecules 21:836

    PubMed Central  Google Scholar 

  3. Choi J, Wang NS (2011) Nanoparticles in biomedical applications and their safety concerns. In: Fazel R (ed) Biomedical engineering–from theory to applications. InTech, Maasticht, pp 299–314

    Google Scholar 

  4. Gwinn MR, Vallyathan V (2006) Nanoparticles: health effects—pros and cons. Environ Health Perspect 114:1818

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Xia Tian, Li Ning, Nel AE (2009) Potential health impact of nanoparticles. Annu Rev Public Health 30:137–150

    PubMed  Google Scholar 

  6. Grillo R, Rosa AH, Fraceto LF (2015) Engineered nanoparticles and organic matter: a review of the state-of-the-art. Chemosphere 119:608–619

    Article  CAS  PubMed  Google Scholar 

  7. Bhatia S (2016) Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. Natural Polymer Drug Delivery Systems Springer, 33–93

  8. Pangi Z, Beletsi A, Evangelatos K (2003) PEG-ylated nanoparticles for biological and pharmaceutical application. Adv Drug Del Rev 24:403–419

    Google Scholar 

  9. Hett A (2004) Nanotechnology: small matter. Many unknowns Swiss Reinsurance Company, Zurich

    Google Scholar 

  10. Banerjee (2001) Liposomes: applications in medicine. J Biomater Appl 16:3–21

    CAS  PubMed  Google Scholar 

  11. Yang L, Webster TJ (2009) Nanotechnology controlled drug delivery for treating bone diseases. Expert Opin Drug Deliv 6:851–864

    CAS  PubMed  Google Scholar 

  12. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE (2001) Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 70:1–20

    CAS  PubMed  Google Scholar 

  13. Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2:8–21

    CAS  Google Scholar 

  14. Adams ML, Lavasanifar A, Kwon GS (2003) Amphiphilic block copolymers for drug delivery. J Pharm Sci 92:1343–1355

    CAS  PubMed  Google Scholar 

  15. Gillies ER, Frechet JM (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10:35–43

    CAS  PubMed  Google Scholar 

  16. Lee P, Lin R, Moon J, Lee LP (2006) Microfluidic alignment of collagen fibers for in vitro cell culture. Biomed Microdevice 8:35–41

    CAS  Google Scholar 

  17. Verma A, Stellacci F (2010) Effect of surface properties on nanoparticle–cell interactions. Small 6:12–21

    CAS  PubMed  Google Scholar 

  18. Skandalis N, Dimopoulou A, Georgopoulou A, Gallios N, Papadopoulos D, Tsipas D et al (2017) The effect of silver nanoparticles size, produced using plant extract from Arbutus unedo, on their antibacterial efficacy. Nanomaterials 7:178

    PubMed Central  Google Scholar 

  19. Whitesides GM (2005) Nanoscience, nanotechnology, and chemistry. Small 1:172–179

    CAS  PubMed  Google Scholar 

  20. Hajipour MJ, Fromm KM, Ashkarran AA, de Aberasturi DJ, de Larramendi IR, Rojo T et al (2012) Antibacterial properties of nanoparticles. Trends Biotechnol 30:499–511

    CAS  PubMed  Google Scholar 

  21. Rai VR, Bai AJ (2011) Nanoparticles and their potential application as antimicrobials. Formatex, Mysore

    Google Scholar 

  22. Ganta S, Devalapally H, Shahiwala A, Amiji M (2008) A review of stimuli-responsive nanocarriers for drug and gene delivery. J Control Release 126:187–204

    CAS  PubMed  Google Scholar 

  23. Motornov M, Roiter Y, Tokarev I, Minko S (2010) Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci 35:174–211

    CAS  Google Scholar 

  24. Bessa PC, Machado R, Nürnberger S, Dopler D, Banerjee A, Cunha AM et al (2010) Thermoresponsive self-assembled elastin-based nanoparticles for delivery of BMPs. J Control Release 142:312–318

    CAS  PubMed  Google Scholar 

  25. Matsuo T, Sugita T, Kubo T, Yasunaga Y, Ochi M, Murakami T (2003) Injectable magnetic liposomes as a novel carrier of recombinant human BMP-2 for bone formation in a rat bone-defect model. J Biomed Mater Res A 66:747–754

    PubMed  Google Scholar 

  26. Tanaka H, Sugita T, Yasunaga Y, Shimose S, Deie M, Kubo T et al (2005) Efficiency of magnetic liposomal transforming growth factor-beta 1 in the repair of articular cartilage defects in a rabbit model. J Biomed Mater Res A 73:255–263

    PubMed  Google Scholar 

  27. Herbst SM, Klegerman ME, Kim H, Qi J, Shelat H, Wassler M et al (2009) Delivery of stem cells to porcine arterial wall with echogenic liposomes conjugated to antibodies against CD34 and intercellular adhesion molecule-1. Mol Pharm 7:3–11

    Google Scholar 

  28. Moura V, Lacerda M, Figueiredo P, Corvo ML, Cruz ME, Soares R et al (2012) Targeted and intracellular triggered delivery of therapeutics to cancer cells and the tumor microenvironment: impact on the treatment of breast cancer. Breast Cancer Res Treat 133:61–73

    CAS  PubMed  Google Scholar 

  29. Dai Y-Q, Qin G, Geng S-Y, Yang B, Xu Q, Wang J-Y (2012) Photo-responsive release of ascorbic acid and catalase in CDBA-liposome for commercial application as a sunscreen cosmetic. RSC Adv 2:3340–3346

    CAS  Google Scholar 

  30. Adibkia K, Omidi Y, Siahi MR, Javadzadeh AR, Barzegar-Jalali M, Barar J et al (2007) Inhibition of endotoxin-induced uveitis by methylprednisolone acetate nanosuspension in rabbits. J Ocul Pharmacol Ther 23:421–432

    CAS  PubMed  Google Scholar 

  31. Tiwari PM, Vig K, Dennis VA, Singh SR (2011) Functionalized gold nanoparticles and their biomedical applications. Nanomaterials 1:31–63

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zinjarde S (2012) Bio-inspired nanomaterials and their applications as antimicrobial agents. Chron Young Sci 3:74–81

    CAS  Google Scholar 

  33. Bahrami K, Nazari P, Nabavi M, Golkar M, Almasirad A, Shahverdi AR (2014) Hydroxyl capped silver–gold alloy nanoparticles: characterization and their combination effect with different antibiotics against Staphylococcus aureus. Nanomed J 1:155–161

    Google Scholar 

  34. Dizaj SM, Mennati A, Jafari S, Khezri K, Adibkia K (2015) Antimicrobial activity of carbon-based nanoparticles. Adv Pharm Bull 5:19

    CAS  Google Scholar 

  35. Nam J-M, Thaxton CS, Mirkin CA (2003) Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301:1884–1886

    CAS  PubMed  Google Scholar 

  36. Chen H, Kou X, Yang Z, Ni W, Wang J (2008) Shape-and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 24:5233–5237

    CAS  PubMed  Google Scholar 

  37. Osterfeld SJ, Yu H, Gaster RS, Caramuta S, Xu L, Han S-J et al (2008) Multiplex protein assays based on real-time magnetic nanotag sensing. Proc Natl Acad Sci 105:20637–20640

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hillaireau H, Couvreur P (2009) Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci 66:2873–2896

    CAS  PubMed  Google Scholar 

  39. Kim BYRJ, Chan WC (2010) Nanomedicine. N Engl J Med 363:2434–2443

    CAS  PubMed  Google Scholar 

  40. Monteiro N, Martins A, Reis RL, Neves NM (2015) Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering. Regen Ther 1:109–118

    PubMed  PubMed Central  Google Scholar 

  41. Jin J, Zhang L, Shi M, Zhang Y, Wang Q (2017) Ti-GO-Ag nanocomposite: the effect of content level on the antimicrobial activity and cytotoxicity. Int J Nanomed 12:4209

    CAS  Google Scholar 

  42. Vi TTT, Rajesh Kumar S, Rout B, Liu C-H, Wong C-B, Chang C-W et al (2018) The preparation of graphene oxide-silver nanocomposites: the effect of silver loads on Gram-positive and Gram-negative antibacterial activities. Nanomaterials 8:163

    PubMed Central  Google Scholar 

  43. Huang L, Yang H, Zhang Y, Xiao W (2016) Study on synthesis and antibacterial properties of Ag NPs/GO nanocomposites. J Nanomater. https://doi.org/10.1155/2016/5685967

    Article  Google Scholar 

  44. Han C, Romero N, Fischer S, Dookran J, Berger A, Doiron AL (2017) Recent developments in the use of nanoparticles for treatment of biofilms. Nanotechnol Rev 6:383–404

    CAS  Google Scholar 

  45. El-Boubbou K (2018) Magnetic iron oxide nanoparticles as drug carriers: preparation, conjugation and delivery. Nanomedicine 13:929–952

    CAS  PubMed  Google Scholar 

  46. Chakraborty AK, Roy T, Mondal S (2016) Development of DNA Nanotechnology and uses in molecular medicine and biology. Insights Biomed 1:2

    Google Scholar 

  47. Yazdi MH, Sepehrizadeh Z, Mahdavi M, Shahverdi AR, Faramarzi MA (2016) Metal, metalloid, and oxide nanoparticles for therapeutic and diagnostic oncology. Nano Biomed Eng 8:246–267

    CAS  Google Scholar 

  48. Chidambaram M, Manavalan R, Kathiresan K (2011) Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J Pharm Pharm Sci 14:67–77

    PubMed  Google Scholar 

  49. Vinogradov S, Wei X (2012) Cancer stem cells and drug resistance: the potential of nanomedicine. Nanomedicine 7:597–615

    CAS  PubMed  Google Scholar 

  50. Derya İlem-Özdemir EG, Ekinci M, Aşikoğlu M (2016) Nanoparticles: from diagnosis to therapy. Int J Med Nano Res 3:15

    Google Scholar 

  51. Subbiah R, Veerapandian M, Yun SK (2010). Nanoparticles: functionalization and multifunctional applications in biomedical sciences. Curr Med Chem 17:4559–4577

    CAS  PubMed  Google Scholar 

  52. Nguyen KT (2011) Targeted nanoparticles for cancer therapy: promises and challenge. J Nanomedic Nanotechnol. https://doi.org/10.4172/2157-7439.1000103e

    Article  Google Scholar 

  53. Banerjee D, Sengupta S (2011) Nanoparticles in cancer chemotherapy. Prog Mol Biol Transl Sci 104:489–507

    CAS  PubMed  Google Scholar 

  54. Gmeiner WH, Ghosh S (2014) Nanotechnology for cancer treatment. Nanotechnol Rev 3:111–122

    CAS  Google Scholar 

  55. Bae YH, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153:198

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sun T, Zhang YS, Pang B, Hyun DC, Yang M, Xia Y (2014) Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed 53:12320–12364

    CAS  Google Scholar 

  57. Maeda H (2001) The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Reg 41:189–207

    CAS  Google Scholar 

  58. Jain S, Hirst D (2012) O’sullivan J. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol 85:101–113

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Matsumura Y, Maeda H (1986) A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Can Res 46:6387–6392

    CAS  Google Scholar 

  60. Fang M, Chen J-H, Xu X-L, Yang P-H, Hildebrand HF (2006) Antibacterial activities of inorganic agents on six bacteria associated with oral infections by two susceptibility tests. Int J Antimicrob Agents 27:513–517

    CAS  PubMed  Google Scholar 

  61. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC (2014) Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 66:2–25

    CAS  PubMed  Google Scholar 

  62. Yin H, Liao L, Fang J (2014) Enhanced permeability and retention (EPR) effect based tumor targeting: the concept, application and prospect. JSM Clin Oncol Res 2:1010

    Google Scholar 

  63. Bhattacharyya S, Kudgus RA, Bhattacharya R, Mukherjee P (2011) Inorganic nanoparticles in cancer therapy. Pharm Res 28:237–259

    CAS  PubMed  Google Scholar 

  64. Stylianopoulos T, Wong C, Bawendi MG, Jain RK, Fukumura D (2012) Multistage nanoparticles for improved delivery into tumor tissue. Methods Enzymol 508:109–130

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Deshpande PPBS, Torchilin VP (2013) Current trends in the use of liposomes for tumor targeting. Nanomedicine 8:1509–1528 (Lond)

    CAS  PubMed  Google Scholar 

  66. Huwyler J, Drewe J, Krähenbühl S (2008) Tumor targeting using liposomal antineoplastic drugs. Int J Nanomed 3:21

    CAS  Google Scholar 

  67. Alexis F, Pridgen EM, Langer R, Farokhzad OC (2010) Nanoparticle technologies for cancer therapy. In: Schäfer-Korting M (ed) Drug delivery. Handbook of experimental pharmacology, vol 197. Springer, Berlin, Heidelberg, pp 55–86

    Google Scholar 

  68. Voinea M, Simionescu M (2002) Designing of ‘intelligent’liposomes for efficient delivery of drugs. J Cell Mol Med 6:465–474

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Needham D, McIntosh T, Lasic D (1992) Repulsive interactions and mechanical stability of polymer-grafted lipid membranes. Biochimica et Biophysica Acta (BBA)-Biomembr 1108:40–48

    CAS  Google Scholar 

  70. Unezaki S, Maruyama K, Takahashi N, Koyama M, Yuda T, Suginaka A et al (1994) Enhanced delivery and antitumor activity of doxorubicin using long-circulating thermosensitive liposomes containing amphipathic polyethylene glycol in combination with local hyperthermia. Pharm Res 11:1180–1185

    CAS  PubMed  Google Scholar 

  71. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K (2000) Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65:271–284

    CAS  PubMed  Google Scholar 

  72. Watanabe K, Kaneko M, Maitani Y (2012) Functional coating of liposomes using a folate–polymer conjugate to target folate receptors. Int J Nanomed 7:3679

    CAS  Google Scholar 

  73. Liu Y, Xu S, Teng L, Yung B, Zhu J, Ding H et al (2011) Synthesis and evaluation of a novel lipophilic folate receptor targeting ligand. Anticancer Res 31:1521–1525

    CAS  PubMed  Google Scholar 

  74. Parvanian S, Mostafavi SM, Aghashiri M (2017) Multifunctional nanoparticle developments in cancer diagnosis and treatment. Sens Bio-Sensing Res 1:81–87

    Google Scholar 

  75. Wang Y, Gao S, Ye W-H, Yoon HS, Yang Y-Y (2006) Co-delivery of drugs and DNA from cationic core–shell nanoparticles self-assembled from a biodegradable copolymer. Nat Mater 5:791

    CAS  PubMed  Google Scholar 

  76. Sengupta S, Eavarone D, Capila I, Zhao G, Watson N, Kiziltepe T et al (2005) Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system. Nature 436:568

    CAS  PubMed  Google Scholar 

  77. Zhu C, Jung S, Luo S, Meng F, Zhu X, Park TG et al (2010) Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA–PCL–PDMAEMA triblock copolymers. Biomaterials 31:2408–2416

    CAS  PubMed  Google Scholar 

  78. Zhang L, Radovic-Moreno AF, Alexis F, Gu FX, Basto PA, Bagalkot V et al (2007) Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle–aptamer bioconjugates. Chem Med Chem 2:1268–1271

    CAS  PubMed  Google Scholar 

  79. Mishra DK, Shandilya R, Mishra P (2018) Lipid based nanocarriers: a translational perspective. Nanomed Nanotechnol Biol Med 14(7):2023–2050

    CAS  Google Scholar 

  80. Prabhu RH, Patravale VB, Joshi MD (2015) Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomed 10:1001

    CAS  Google Scholar 

  81. Kataoka K, Harada A, Nagasaki Y (2001) Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Deliv Rev 47:113–131

    CAS  PubMed  Google Scholar 

  82. Discher DE, Ortiz V, Srinivas G, Klein ML, Kim Y, Christian D et al (2007) Emerging applications of polymersomes in delivery: from molecular dynamics to shrinkage of tumors. Prog Polym Sci 32:838–857

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Meng F, Zhong Z, Feijen J (2009) Stimuli-responsive polymersomes for programmed drug delivery. Biomacromol 10:197–209

    CAS  Google Scholar 

  84. Lee CC, MacKay JA, Fréchet JM, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23:1517

    CAS  PubMed  Google Scholar 

  85. Gao C, Yan D (2004) Hyperbranched polymers: from synthesis to applications. Prog Polym Sci 29:183–275

    CAS  Google Scholar 

  86. Bellomo EG, Wyrsta MD, Pakstis L, Pochan DJ, Deming TJ (2004) Stimuli-responsive polypeptide vesicles by conformation-specific assembly. Nat Mater 3:244

    CAS  PubMed  Google Scholar 

  87. Peracchia M, Harnisch S, Pinto-Alphandary H, Gulik A, Dedieu J, Desmaele D et al (1999) Visualization of in vitro protein-rejecting properties of PEGylated stealth® polycyanoacrylate nanoparticles. Biomaterials 20:1269–1275

    CAS  PubMed  Google Scholar 

  88. Gref R, Lück M, Quellec P, Marchand M, Dellacherie E, Harnisch S et al (2000) ‘Stealth’corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B 18:301–313

    CAS  Google Scholar 

  89. Wang M, Thanou M (2010) Targeting nanoparticles to cancer. Pharmacol Res 62:90–99

    CAS  PubMed  Google Scholar 

  90. Vasey PA, Kaye SB, Morrison R, Twelves C, Wilson P, Duncan R et al (1999) Phase I clinical and pharmacokinetic study of PK1 [N-(2-hydroxypropyl) methacrylamide copolymer doxorubicin]: first member of a new class of chemotherapeutic agents—drug-polymer conjugates. Clin Cancer Res 5:83–94

    CAS  PubMed  Google Scholar 

  91. Singer JW (2005) Paclitaxel poliglumex (XYOTAX™, CT-2103): a macromolecular taxane. J Control Release 109:120–126

    CAS  PubMed  Google Scholar 

  92. Mitra AK, Cholkar K, Mandal A (2017) Emerging nanotechnologies for diagnostics, drug delivery and medical devices. In: Cholkar K, Acharya G, Trinh HM, Singh G (eds) Therapeutic applications of polymeric materials. Elsevier, New York, pp 1–19

    Google Scholar 

  93. Li C (2002) Poly (l-glutamic acid)–anticancer drug conjugates. Adv Drug Deliv Rev 54:695–713

    CAS  PubMed  Google Scholar 

  94. Matsumura Y (2008) Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv Drug Deliv Rev 60:899–914

    CAS  PubMed  Google Scholar 

  95. Lee KS, Chung HC, Im SA, Park YH, Kim CS, Kim S-B et al (2008) Multicenter phase II trial of Genexol-PM, a Cremophor-free, polymeric micelle formulation of paclitaxel, in patients with metastatic breast cancer. Breast Cancer Res Treat 108:241–250

    CAS  PubMed  Google Scholar 

  96. Wiradharma NZY, Venkataraman S, Hedrick JL, Yang YY (2009) Self-assembled polymer nanostructures for delivery of anticancer therapeutics. Nano Today 4:302–317

    CAS  Google Scholar 

  97. Ke X-Y, Ng VWL, Gao S-J, Tong YW, Hedrick JL, Yang YY (2014) Co-delivery of thioridazine and doxorubicin using polymeric micelles for targeting both cancer cells and cancer stem cells. Biomaterials 35:1096–1108

    CAS  PubMed  Google Scholar 

  98. Kim SC, Kim DW, Shim YH, Bang JS, Oh HS, Kim SW et al (2001) In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J Control Release 72:191–202

    CAS  PubMed  Google Scholar 

  99. Kim D-W, Kim S-Y, Kim H-K, Kim S-W, Shin S, Kim J et al (2007) Multicenter phase II trial of Genexol-PM, a novel Cremophor-free, polymeric micelle formulation of paclitaxel, with cisplatin in patients with advanced non-small-cell lung cancer. Ann Oncol 18:2009–2014

    PubMed  Google Scholar 

  100. Palmerston Mendes L, Pan J, Torchilin VP (2017) Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 22:1401

    PubMed Central  Google Scholar 

  101. Zhong Q, Bielski ER, Rodrigues LS, Brown MR, Reineke JJ, da Rocha SR (2016) Conjugation to poly (amidoamine) dendrimers and pulmonary delivery reduce cardiac accumulation and enhance antitumor activity of doxorubicin in lung metastasis. Mol Pharm 13:2363–2375

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Quintana A, Raczka E, Piehler L, Lee I, Myc A, Majoros I et al (2002) Design and function of a dendrimer-based therapeutic nanodevice targeted to tumor cells through the folate receptor. Pharm Res 19:1310–1316

    CAS  PubMed  Google Scholar 

  103. Lohcharoenkal W, Wang L, Chen YC, Rojanasakul Y (2014) Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Res Int. https://doi.org/10.1155/2014/180549

    Article  PubMed  PubMed Central  Google Scholar 

  104. Tarhini M, Greige-Gerges H, Elaissari A (2017) Protein-based nanoparticles: from preparation to encapsulation of active molecules. Int J Pharm 522:172–197

    CAS  PubMed  Google Scholar 

  105. Nyman DW, Campbell KJ, Hersh E, Long K, Richardson K, Trieu V et al (2005) Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patients with advanced nonhematologic malignancies. J Clin Oncol 23:7785–7793

    CAS  PubMed  Google Scholar 

  106. Desai N, Trieu V, Yao Z, Louie L, Ci S, Yang A et al (2006) Increased antitumor activity, intratumor paclitaxel concentrations, and endothelial cell transport of cremophor-free, albumin-bound paclitaxel, ABI-007, compared with cremophor-based paclitaxel. Clin Cancer Res 12:1317–1324

    CAS  PubMed  Google Scholar 

  107. Srinivas G, Discher DE, Klein ML (2004) Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics. Nat Mater 3:638

    CAS  PubMed  Google Scholar 

  108. Ahmed F, Pakunlu RI, Srinivas G, Brannan A, Bates F, Klein ML et al (2006) Shrinkage of a rapidly growing tumor by drug-loaded polymersomes: pH-triggered release through copolymer degradation. Mol Pharm 3:340–350

    CAS  PubMed  Google Scholar 

  109. Hou B, Zheng B, Yang W, Dong C, Wang H, Chang J (2017) Construction of near infrared light triggered nanodumbbell for cancer photodynamic therapy. J Colloid Interface Sci 494:363–372

    CAS  PubMed  Google Scholar 

  110. Xin Y, Yin M, Zhao L, Meng F, Luo L (2017) Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med 14:228

    PubMed  PubMed Central  Google Scholar 

  111. Bayda S, Hadla M, Palazzolo S, Corona G, Toffoli G, Rizzolio F (2017) Inorganic nanoparticles for cancer therapy: a transition from lab to clinic. Curr Med Chem. https://doi.org/10.2174/0929867325666171229141156

    Article  Google Scholar 

  112. Abbasi E, Kafshdooz T, Bakhtiary M, Nikzamir N, Nikzamir N, Nikzamir M et al (2016) Biomedical and biological applications of quantum dots. Artif Cell Nanomed Biotechnol 44:885–891

    CAS  Google Scholar 

  113. Chattopadhyay S, Dash SK, Mandal D, Das B, Tripathy S, Dey A et al (2016) Metal based nanoparticles as cancer antigen delivery vehicles for macrophage based antitumor vaccine. Vaccine 34:957–967

    CAS  PubMed  Google Scholar 

  114. Chattopadhyay S, Dash SK, Tripathy S, Pramanik P, Roy S (2015) Phosphonomethyl iminodiacetic acid-conjugated cobalt oxide nanoparticles liberate Co ++ ion-induced stress associated activation of TNF-α/p38 MAPK/caspase 8-caspase 3 signaling in human leukemia cells. J Biol Inorg Chem 20:123–141

    CAS  PubMed  Google Scholar 

  115. Chattopadhyay S, Dash SK, Mahapatra SK, Tripathy S, Ghosh T, Das B et al (2014) Chitosan-modified cobalt oxide nanoparticles stimulate TNF-α-mediated apoptosis in human leukemic cells. J Biol Inorg Chem 19:399–414

    CAS  PubMed  Google Scholar 

  116. Farrer NJ, Salassa L, Sadler PJ (2009) Photoactivated chemotherapy (PACT): the potential of excited-state d-block metals in medicine. Dalton Trans 48:10690–10701

    Google Scholar 

  117. Hernandez-Delgadillo R, Velasco-Arias D, Diaz D, Arevalo-Niño K, Garza-Enriquez M, De la Garza-Ramos MA et al (2012) Zerovalent bismuth nanoparticles inhibit Streptococcus mutans growth and formation of biofilm. Int J Nanomed 7:2109

    CAS  Google Scholar 

  118. Zhao P, Li N, Astruc D (2013) State of the art in gold nanoparticle synthesis. Coord Chem Rev 257:638–665

    CAS  Google Scholar 

  119. Her S, Jaffray DA, Allen C (2017) Gold nanoparticles for applications in cancer radiotherapy: mechanisms and recent advancements. Adv Drug Deliv Rev 109:84–101

    CAS  PubMed  Google Scholar 

  120. Spyratou E, Makropoulou M, Efstathopoulos EP, Georgakilas AG, Sihver L (2017) Recent advances in cancer therapy based on dual mode gold nanoparticles. Cancers 9:173

    PubMed Central  Google Scholar 

  121. Abadeer NS, Murphy CJ (2016) Recent progress in cancer thermal therapy using gold nanoparticles. J Phy Chem C 120:4691–4716

    CAS  Google Scholar 

  122. Bagheri S, Yasemi M, Safaie-Qamsari E, Rashidiani J, Abkar M, Hassani M et al (2018) Using gold nanoparticles in diagnosis and treatment of melanoma cancer. Artif Cells Blood Substit Biotechnol. https://doi.org/10.1080/21691401.2018.1430585

    Article  Google Scholar 

  123. Huang X, O’Connor R, Kwizera EA (2017) Gold nanoparticle based platforms for circulating cancer marker detection. Nanotheranostics 1:80–102 (Sydney, NSW)

    PubMed  PubMed Central  Google Scholar 

  124. Barai AC, Paul K, Dey A, Manna S, Roy S, Bag BG et al (2018) Green synthesis of Nerium oleander-conjugated gold nanoparticles and study of its in vitro anticancer activity on MCF-7 cell lines and catalytic activity. Nano Converg 5:10

    PubMed  PubMed Central  Google Scholar 

  125. Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315

    CAS  PubMed  Google Scholar 

  126. Rana S, Bajaj A, Mout R, Rotello VM (2012) Monolayer coated gold nanoparticles for delivery applications. Adv Drug Deliv Rev 64:200–216

    CAS  PubMed  Google Scholar 

  127. Mieszawska AJ, Mulder WJ, Fayad ZA, Cormode DP (2013) Multifunctional gold nanoparticles for diagnosis and therapy of disease. Mol Pharm 10:831–847

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Mi Y, Shao Z, Vang J, Kaidar-Person O, Wang AZ (2016) Application of nanotechnology to cancer radiotherapy. Cancer Nanotechnol 7:11

    PubMed  PubMed Central  Google Scholar 

  129. Schuemann J, Berbeco R, Chithrani DB, Cho SH, Kumar R, McMahon SJ et al (2016) Roadmap to clinical use of gold nanoparticles for radiation sensitization. International Journal of Radiation Oncology• Biology•. Physics 94:189–205

    Google Scholar 

  130. Patra CR, Bhattacharya R, Mukhopadhyay D, Mukherjee P (2010) Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer. Adv Drug Deliv Rev 62:346–361

    CAS  PubMed  Google Scholar 

  131. Patra CR, Bhattacharya R, Wang E, Katarya A, Lau JS, Dutta S et al (2008) Targeted delivery of gemcitabine to pancreatic adenocarcinoma using cetuximab as a targeting agent. Cancer Res 68:1970–1978

    CAS  PubMed  Google Scholar 

  132. Jiang W, Kim BY, Rutka JT, Chan WC (2008) Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol 3:145

    CAS  PubMed  Google Scholar 

  133. Hirsch LR, Stafford RJ, Bankson J, Sershen SR, Rivera B, Price R et al (2003) Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc Natl Acad Sci 100:13549–13554

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Stern JM, Stanfield J, Lotan Y, Park S, Hsieh J-T, Cadeddu JA (2007) Efficacy of laser-activated gold nanoshells in ablating prostate cancer cells in vitro. J Endourol 21:939–943

    PubMed  Google Scholar 

  135. Jain KK (2003) Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Rev Mol Diagn 3:153–161

    CAS  PubMed  Google Scholar 

  136. Bernstein AL, Dhanantwari A, Jurcova M, Cheheltani R, Naha PC, Ivanc T et al (2016) Improved sensitivity of computed tomography towards iodine and gold nanoparticle contrast agents via iterative reconstruction methods. Sci Rep 6:26177

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Liao S, Chan CK, Ramakrishna S (2008) Stem cells and biomimetic materials strategies for tissue engineering. Mater Sci Eng C 28:1189–1202

    CAS  Google Scholar 

  138. Chung BGKL, Khademhosseini A (2007) Micro- and nanoscale technologies for tissue engineering and drug discovery applications. Expert Opin Drug Discov 2:1653–1668

    CAS  PubMed  Google Scholar 

  139. Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13

    CAS  PubMed  Google Scholar 

  140. Quaglia F (2008) Bioinspired tissue engineering: the great promise of protein delivery technologies. Int J Pharm 364:281–297

    CAS  PubMed  Google Scholar 

  141. Santo VE, Duarte ARC, Popa EG, Gomes ME, Mano JF, Reis RL (2012) Enhancement of osteogenic differentiation of human adipose derived stem cells by the controlled release of platelet lysates from hybrid scaffolds produced by supercritical fluid foaming. J Control Release 162:19–27

    CAS  PubMed  Google Scholar 

  142. Santo VE, Gomes ME, Mano JF, Reis RL (2013) Controlled release strategies for bone, cartilage, and osteochondral engineering—part I: recapitulation of native tissue healing and variables for the design of delivery systems. Tissue Eng B Rev 19:308–326

    CAS  Google Scholar 

  143. Xing Z-C, Han S-J, Shin Y-S, Kang I-K (2011) Fabrication of biodegradable polyester nanocomposites by electrospinning for tissue engineering. J Nanomater. https://doi.org/10.1155/2011/929378

    Article  Google Scholar 

  144. Li C, Vepari C, Jin H-J, Kim HJ, Kaplan DL (2006) Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials 27:3115–3124

    CAS  PubMed  Google Scholar 

  145. Silva G, Pedro A, Costa F, Neves N, Coutinho O, Reis R (2005) Soluble starch and composite starch bioactive glass 45S5 particles: synthesis, bioactivity, and interaction with rat bone marrow cells. Mater Sci Eng C 25:237–246

    Google Scholar 

  146. Habraken W, Wolke J, Jansen J (2007) Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev 59:234–248

    CAS  PubMed  Google Scholar 

  147. Luz GM, Mano JF (2012) Chitosan/bioactive glass nanoparticles composites for biomedical applications. Biomed Mater 7:054104

    PubMed  Google Scholar 

  148. Martins A, Reis RL, Neves NM (2013) Electrospinning: processing technique for tissue engineering scaffolding. J Int Mater Rev 53:257–274

    Google Scholar 

  149. Poste GKR (1983) Site–specific (targeted) drug delivery in cancer therapy. Nat Biotechnol 1:869–878

    CAS  Google Scholar 

  150. Yu X, Trase I, Ren M, Duval K, Guo X, Chen Z (2016) Design of nanoparticle-based carriers for targeted drug delivery. J Nanomater. https://doi.org/10.1155/2016/1087250

    Article  PubMed  PubMed Central  Google Scholar 

  151. Rabanel M (2012) J, Aoun V, Elkin I, Mokhtar M, Hildgen P. Drug-loaded nanocarriers: passive targeting and crossing of biological barriers. Curr Med Chem 19:3070–3102

    CAS  PubMed  Google Scholar 

  152. Mercado AE, Ma J, He X, Jabbari E (2009) Release characteristics and osteogenic activity of recombinant human bone morphogenetic protein-2 grafted to novel self-assembled poly (lactide-co-glycolide fumarate) nanoparticles. J Control Release 140:148–156

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Chen L, Liu L, Li C, Tan Y, Zhang G (2011) A new growth factor controlled drug release system to promote healing of bone fractures: nanospheres of recombinant human bone morphogenetic-2 and polylactic acid. J Nanosci Nanotechnol 11:3107–3114

    CAS  PubMed  Google Scholar 

  154. Oliveira JM, Sousa RA, Kotobuki N, Tadokoro M, Hirose M, Mano JF et al (2009) The osteogenic differentiation of rat bone marrow stromal cells cultured with dexamethasone-loaded carboxymethylchitosan/poly (amidoamine) dendrimer nanoparticles. Biomaterials 30:804–813

    CAS  PubMed  Google Scholar 

  155. Shah DA, Kwon S-J, Bale SS, Banerjee A, Dordick JS, Kane RS (2011) Regulation of stem cell signaling by nanoparticle-mediated intracellular protein delivery. Biomaterials 32:3210–3219

    CAS  PubMed  Google Scholar 

  156. Fanord F, Fairbairn K, Kim H, Garces A, Bhethanabotla V, Gupta VK (2010) Bisphosphonate-modified gold nanoparticles: a useful vehicle to study the treatment of osteonecrosis of the femoral head. Nanotechnology 22:035102

    PubMed  Google Scholar 

  157. Jensen T, Baas J, Dolathshahi-Pirouz A, Jacobsen T, Singh G, Nygaard JV et al (2011) Osteopontin functionalization of hydroxyapatite nanoparticles in a PDLLA matrix promotes bone formation. J Biomed Mater Res A 99:94–101

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Walmsley GG, McArdle A, Tevlin R, Momeni A, Atashroo D, Hu MS et al (2015) Nanotechnology in bone tissue engineering. Nanomed Nanotechnol Biol Med 11:1253–1263

    CAS  Google Scholar 

  159. Chou LY, Ming K, Chan WC (2011) Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 40:233–245

    CAS  PubMed  Google Scholar 

  160. Albanese A, Tang PS, Chan WC (2012) The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 14:1–16

    CAS  PubMed  Google Scholar 

  161. Li Y, Kröger M, Liu WK (2015) Shape effect in cellular uptake of PEGylated nanoparticles: comparison between sphere, rod, cube and disk. Nanoscale 7:16631–16646

    CAS  PubMed  Google Scholar 

  162. Saha RN, Vasanthakumar S, Bende G, Snehalatha M (2010) Nanoparticulate drug delivery systems for cancer chemotherapy. Mol Membr Biol 27:215–231

    CAS  PubMed  Google Scholar 

  163. Sahu A, Choi WI, Lee JH, Tae G (2013) Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials 34:6239–6248

    CAS  PubMed  Google Scholar 

  164. Wang Y, Wang K, Zhao J, Liu X, Bu J, Yan X et al (2013) Multifunctional mesoporous silica-coated graphene nanosheet used for chemo-photothermal synergistic targeted therapy of glioma. J Am Chem Soc 135:4799–4804

    CAS  PubMed  Google Scholar 

  165. Kansara K, Patel P, Shukla RK, Pandya A, Shanker R, Kumar A et al (2018) Synthesis of biocompatible iron oxide nanoparticles as a drug delivery vehicle. Int J Nanomed 13:79

    CAS  Google Scholar 

  166. McBain SC, Yiu HH, Dobson J (2008) Magnetic nanoparticles for gene and drug delivery. Int J Nanomed 3:169

    CAS  Google Scholar 

  167. Schleich N, Po C, Jacobs D, Ucakar B, Gallez B, Danhier F et al (2014) Comparison of active, passive and magnetic targeting to tumors of multifunctional paclitaxel/SPIO-loaded nanoparticles for tumor imaging and therapy. J Control Release 194:82–91

    CAS  PubMed  Google Scholar 

  168. Zare T, Sattarahmady N (2016) A mini-review of magnetic nanoparticles: applications in biomedicine. Basic Clin Cancer Res 7:29–39

    Google Scholar 

  169. Holzinger M, Le Goff A, Cosnier S (2014) Nanomaterials for biosensing applications: a review. Front Chem 2:63

    PubMed  PubMed Central  Google Scholar 

  170. Holzinger M, Le Goff A, Cosnier S (2017) Synergetic effects of combined nanomaterials for biosensing applications. Sensors 17:1010

    PubMed Central  Google Scholar 

  171. Su J, Goldberg AF, Stoltz BM (2016) Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators. Light Sci Appl 5:e16001

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Lu K, Aung T, Guo N, Weichselbaum R, Lin W (2018) Nanoscale metal–organic frameworks for therapeutic, imaging, and sensing applications. Adv Mater. https://doi.org/10.1002/adma.201707634

    Article  PubMed  PubMed Central  Google Scholar 

  173. He C, Lu K, Lin W (2014) Nanoscale metal–organic frameworks for real-time intracellular pH sensing in live cells. J Am Chem Soc 136:12253–12256

    CAS  PubMed  PubMed Central  Google Scholar 

  174. Xu R, Wang Y, Duan X, Lu K, Micheroni D, Hu A et al (2016) Nanoscale metal–organic frameworks for ratiometric oxygen sensing in live cells. J Am Chem Soc 138:2158–2161

    CAS  PubMed  PubMed Central  Google Scholar 

  175. Wu P, Wang J, He C, Zhang X, Wang Y, Liu T et al (2012) Luminescent metal-organic frameworks for selectively sensing nitric oxide in an aqueous solution and in living cells. Adv Funct Mater 22:1698–1703

    CAS  Google Scholar 

  176. Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radical Biol Med 18:321–336

    CAS  Google Scholar 

  177. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346

    CAS  PubMed  Google Scholar 

  178. Yamanaka M, Hara K, Kudo J (2005) Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol 71:7589–7593

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Sarkar S, Jana AD, Samanta SK, Mostafa G (2007) Facile synthesis of silver nano particles with highly efficient anti-microbial property. Polyhedron 26:4419–4426

    CAS  Google Scholar 

  180. Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18:225103

    Google Scholar 

  181. Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed Nanotechnol Biol Med 3:168–171

    CAS  Google Scholar 

  182. Swamy MK, Sudipta K, Jayanta K, Balasubramanya S (2015) The green synthesis, characterization, and evaluation of the biological activities of silver nanoparticles synthesized from Leptadenia reticulata leaf extract. Appl Nanosci 5:73–81

    Google Scholar 

  183. Swamy MK, Akhtar MS, Mohanty SK, Sinniah UR (2015) Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochim Acta Part A Mol Biomol Spectrosc 151:939–944

    CAS  Google Scholar 

  184. Akhtar M, Swamy MK, Umar A, Sahli A, Abdullah A (2015) Biosynthesis and characterization of silver nanoparticles from methanol leaf extract of Cassia didymobotrya and assessment of their antioxidant and antibacterial activities. J Nanosci Nanotechnol 15:9818–9823

    CAS  PubMed  Google Scholar 

  185. Mandal D, Dash SK, Das B, Chattopadhyay S, Ghosh T, Das D et al (2016) Bio-fabricated silver nanoparticles preferentially targets Gram positive depending on cell surface charge. Biomed Pharmacother 83:548–558

    CAS  PubMed  Google Scholar 

  186. Das B, Dash SK, Mandal D, Ghosh T, Chattopadhyay S, Tripathy S et al (2017) Green synthesized silver nanoparticles destroy multidrug resistant bacteria via reactive oxygen species mediated membrane damage. Arab J Chem 10:862–876

    CAS  Google Scholar 

  187. Yamamoto O, Sawai J, Sasamoto T (2000) Change in antibacterial characteristics with doping amount of ZnO in MgO–ZnO solid solution. Int J Inorg Mater 2:451–454

    Google Scholar 

  188. Sawai J, Shiga H, Kojima H (2001) Kinetic analysis of death of bacteria in CaO powder slurry. Int Biodeterior Biodegradation 47:23–26

    CAS  Google Scholar 

  189. Tang Z-X, Lv B-F (2014) MgO nanoparticles as antibacterial agent: preparation and activity. Braz J Chem Eng 31:591–601

    Google Scholar 

  190. Sawai J, Kojima H, Igarashi H, Hashimoto A, Shoji S, Sawaki T et al (2000) Antibacterial characteristics of magnesium oxide powder. World J Microbiol Biotechnol 16:187–194

    CAS  Google Scholar 

  191. Richards R, Li W, Decker S, Davidson C, Koper O, Zaikovski V et al (2000) Consolidation of metal oxide nanocrystals. Reactive pellets with controllable pore structure that represent a new family of porous, inorganic materials. J Am Chem Soc 122:4921–4925

    CAS  Google Scholar 

  192. Koper OB, Klabunde JS, Marchin GL, Klabunde KJ, Stoimenov P, Bohra L (2002) Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of bacillus species, viruses, and toxins. Curr Microbiol 44:49–55

    CAS  PubMed  Google Scholar 

  193. Krishnamoorthy K, Manivannan G, Kim SJ, Jeyasubramanian K, Premanathan M (2012) Antibacterial activity of MgO nanoparticles based on lipid peroxidation by oxygen vacancy. J Nanopart Res 14:1063

    Google Scholar 

  194. Linsebigler AL, Lu G, Yates JT Jr (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758

    CAS  Google Scholar 

  195. Hirakawa K, Mori M, Yoshida M, Oikawa S, Kawanishi S (2004) Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide. Free Radical Res 38:439–447

    CAS  Google Scholar 

  196. Wong M-S, Chu W-C, Sun D-S, Huang H-S, Chen J-H, Tsai P-J et al (2006) Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens. Appl Environ Microbiol 72:6111–6116

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Besinis A, De Peralta T, Handy RD (2014) The antibacterial effects of silver, titanium dioxide and silica dioxide nanoparticles compared to the dental disinfectant chlorhexidine on Streptococcus mutans using a suite of bioassays. Nanotoxicology 8:1–16

    CAS  PubMed  Google Scholar 

  198. Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3:643–646

    CAS  Google Scholar 

  199. Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study. Sci Technol Adv Mater 9:035004

    PubMed  PubMed Central  Google Scholar 

  200. Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76

    CAS  PubMed  Google Scholar 

  201. Liu Y, He L, Mustapha A, Li H, Hu Z, Lin M (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: h7. J Appl Microbiol 107:1193–1201

    CAS  PubMed  Google Scholar 

  202. Gil-Tomás J, Tubby S, Parkin IP, Narband N, Dekker L, Nair SP et al (2007) Lethal photosensitisation of Staphylococcus aureus using a toluidine blue O–tiopronin–gold nanoparticle conjugate. J Mater Chem 17:3739–3746

    Google Scholar 

  203. Kuo W-S, Chang C-N, Chang Y-T, Yeh C-S (2009) Antimicrobial gold nanorods with dual-modality photodynamic inactivation and hyperthermia. Chem Commun. https://doi.org/10.1039/B907274H

    Article  Google Scholar 

  204. Pissuwan D, Cortie CH, Valenzuela SM, Cortie MB (2010) Functionalised gold nanoparticles for controlling pathogenic bacteria. Trends Biotechnol 28:207–213

    CAS  PubMed  Google Scholar 

  205. Perni S, Piccirillo C, Pratten J, Prokopovich P, Chrzanowski W, Parkin IP et al (2009) The antimicrobial properties of light-activated polymers containing methylene blue and gold nanoparticles. Biomaterials 30:89–93

    CAS  PubMed  Google Scholar 

  206. Zharov VP, Mercer KE, Galitovskaya EN, Smeltzer MS (2006) Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J 90:619–627

    CAS  PubMed  Google Scholar 

  207. Bapista PPE, Eaton P, Doria G, Miranda A, Gomes I, Quaresma P, Franco R (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391:943–950

    Google Scholar 

  208. Gu H, Ho P, Tong E, Wang L, Xu B (2003) Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett 3:1261–1263

    CAS  Google Scholar 

  209. Burygin G, Khlebtsov B, Shantrokha A, Dykman L, Bogatyrev V, Khlebtsov N (2009) On the enhanced antibacterial activity of antibiotics mixed with gold nanoparticles. Nanoscale Res Lett 4:794

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Grace AN, Pandian K (2007) Antibacterial efficacy of aminoglycosidic antibiotics protected gold nanoparticles—a brief study. Colloids Surf A Physicochemical Eng Asp 297:63–70

    CAS  Google Scholar 

  211. Saha B, Bhattacharya J, Mukherjee A, Ghosh A, Santra C, Dasgupta AK et al (2007) In vitro structural and functional evaluation of gold nanoparticles conjugated antibiotics. Nanoscale Res Lett 2:614

    CAS  PubMed Central  Google Scholar 

  212. Rai A, Prabhune A, Perry CC (2010) Antibiotic mediated synthesis of gold nanoparticles with potent antimicrobial activity and their application in antimicrobial coatings. J Mater Chem 20:6789–6798

    CAS  Google Scholar 

  213. Chatterjee AK, Sarkar RK, Chattopadhyay AP, Aich P, Chakraborty R, Basu T (2012) A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli. Nanotechnology 23:085103

    PubMed  Google Scholar 

  214. Sampath M, Vijayan R, Tamilarasu E, Tamilselvan A, Sengottuvelan B (2014) Green synthesis of novel jasmine bud-shaped copper nanoparticles. J Nanotechnol. https://doi.org/10.1155/2014/626523

    Article  Google Scholar 

  215. Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W et al (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol 60:75–80

    CAS  Google Scholar 

  216. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716

    CAS  PubMed  Google Scholar 

  217. Mohammad G, Mishra VK, Pandey H (2008) Antioxidant properties of some nanoparticle may enhance wound healing in T2DM patient. Digest J Nanomater Biostruct 3:159–162

    Google Scholar 

  218. Hernandez-Delgadillo R, Velasco-Arias D, Martinez-Sanmiguel JJ, Diaz D, Zumeta-Dube I, Arevalo-Niño K et al (2013) Bismuth oxide aqueous colloidal nanoparticles inhibit Candida albicans growth and biofilm formation. Int J Nanomed 8:1645

    Google Scholar 

  219. Luo Y, Hossain M, Wang C, Qiao Y, An J, Ma L et al (2013) Targeted nanoparticles for enhanced X-ray radiation killing of multidrug-resistant bacteria. Nanoscale 5:687–694

    CAS  PubMed  Google Scholar 

  220. Nazari P, Dowlatabadi-Bazaz R, Mofid M, Pourmand M, Daryani N, Faramarzi M et al (2014) The antimicrobial effects and metabolomic footprinting of carboxyl-capped bismuth nanoparticles against Helicobacter pylori. Appl Biochem Biotechnol 172:570–579

    CAS  PubMed  Google Scholar 

  221. Leid JG, Ditto AJ, Knapp A, Shah PN, Wright BD, Blust R et al (2011) In vitro antimicrobial studies of silver carbene complexes: activity of free and nanoparticle carbene formulations against clinical isolates of pathogenic bacteria. J Antimicrob Chemother 67:138–148

    PubMed  PubMed Central  Google Scholar 

  222. Arias LR, Yang L (2009) Inactivation of bacterial pathogens by carbon nanotubes in suspensions. Langmuir 25:3003–3012

    CAS  PubMed  Google Scholar 

  223. Dong L, Henderson A, Field C (2012) Antimicrobial activity of single-walled carbon nanotubes suspended in different surfactants. J Nanotechnol. https://doi.org/10.1155/2012/928924

    Article  Google Scholar 

  224. Tegos GP, Demidova TN, Arcila-Lopez D, Lee H, Wharton T, Gali H et al (2005) Cationic fullerenes are effective and selective antimicrobial photosensitizers. Chem Biol 12:1127–1135

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Cataldo F, Da Ros T (2008) Medicinal chemistry and pharmacological potential of fullerenes and carbon nanotubes. Springer Science & Business Media, Berlin

    Google Scholar 

  226. Nakamura S, Mashino T (2009) Biological activities of water-soluble fullerene derivatives. Journal of Physics: Conference Series: IOP Publishing p. 012003

    Google Scholar 

  227. Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736

    CAS  PubMed  Google Scholar 

  228. Zhou C, Qi X, Li P, Chen WN, Mouad L, Chang MW et al (2009) High potency and broad-spectrum antimicrobial peptides synthesized via ring-opening polymerization of α-aminoacid-N-carboxyanhydrides. Biomacromol 11:60–67

    Google Scholar 

  229. Beyth N, Houri-Haddad Y, Domb A, Khan W, Hazan R (2015) Alternative antimicrobial approach: nano-antimicrobial materials. Evid Based Complement Alternat Med. https://doi.org/10.1155/2015/246012

    Article  PubMed  PubMed Central  Google Scholar 

  230. Sauvet G, Fortuniak W, Kazmierski K, Chojnowski J (2003) Amphiphilic block and statistical siloxane copolymers with antimicrobial activity. J Polym Sci Part A Polym Chem 41:2939–2948

    CAS  Google Scholar 

  231. Zhang H, Wang D, Butler R, Campbell NL, Long J, Tan B et al (2008) Formation and enhanced biocidal activity of water-dispersable organic nanoparticles. Nat Nanotechnol 3:506

    CAS  PubMed  Google Scholar 

  232. Lara HH, Ayala-Nuñez NV, Ixtepan-Turrent L, Rodriguez-Padilla C (2010) Mode of antiviral action of silver nanoparticles against HIV-1. J Nanobiotechnol 8:1

    Google Scholar 

  233. Antoine TE, Hadigal SR, Yakoub AM, Mishra YK, Bhattacharya P, Haddad C et al (2016) Intravaginal zinc oxide tetrapod nanoparticles as novel immunoprotective agents against genital herpes. J Immunol 196:4566–4575

    CAS  PubMed  Google Scholar 

  234. Broglie JJ, Alston B, Yang C, Ma L, Adcock AF, Chen W et al (2015) Antiviral activity of gold/copper sulfide core/shell nanoparticles against human norovirus virus-like particles. PLoS One 10:e0141050

    PubMed  PubMed Central  Google Scholar 

  235. Amirkhanov RNMN, Amirkhanov NV (2015) Zarytova VF Composites of peptide nucleic acids with titanium dioxide nanoparticles IV Antiviral activity of nanocomposites containing DNA/PNA duplexes. Russ J Bioorg Chem 41:140–146

    CAS  Google Scholar 

  236. de Silva JMSE, Santos MI, Kobarg J, Bajgelman MC, Cardoso MB (2016) Viral inhibition mechanism mediated by surface-modified silica nanoparticles. ACS Appl Mater Interfaces 8:16564–16572

    Google Scholar 

  237. Lin Z, Li Y, Guo M, Xu T, Wang C, Zhao M et al (2017) The inhibition of H1N1 influenza virus-induced apoptosis by silver nanoparticles functionalized with zanamivir. RSC Adv 7:742–750

    CAS  Google Scholar 

  238. Gaikwad S, Ingle A, Gade A, Rai M, Falanga A, Incoronato N et al (2013) Antiviral activity of mycosynthesized silver nanoparticles against herpes simplex virus and human parainfluenza virus type 3. Int J Nanomed 8:4303

    Google Scholar 

  239. Tutaj K, Szlazak R, Szalapata K, Starzyk J, Luchowski R, Grudzinski W et al (2016) Amphotericin B-silver hybrid nanoparticles: synthesis, properties and antifungal activity. Nanomed Nanotechnol Biol Med 12:1095–1103

    CAS  Google Scholar 

  240. Chudzik B, Czernel G, Miaskowski A, Gagoś M (2017) Amphotericin B-copper (II) complex shows improved therapeutic index in vitro. Eur J Pharm Sci 97:9–21

    CAS  PubMed  Google Scholar 

  241. Viet PV, Nguyen HT, Cao TM, Hieu LV (2016) Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method. J Nanomater 2016:6

    Google Scholar 

  242. Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomed Nanotechol 4:165

    Google Scholar 

  243. Samberg ME, Oldenburg SJ, Monteiro-Riviere NA (2010) Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro. Environ Health Perspect 118:407

    CAS  PubMed  Google Scholar 

  244. Zhang J, Wu L, Chan H-K, Watanabe W (2011) Formation, characterization, and fate of inhaled drug nanoparticles. Adv Drug Deliv Rev 63:441–455

    CAS  PubMed  Google Scholar 

  245. Wu L, Zhang J, Watanabe W (2011) Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev 63:456–469

    CAS  PubMed  Google Scholar 

  246. Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41:2740–2779

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gudepalya Renukaiah Rudramurthy or Mallappa Kumara Swamy.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rudramurthy, G.R., Swamy, M.K. Potential applications of engineered nanoparticles in medicine and biology: an update. J Biol Inorg Chem 23, 1185–1204 (2018). https://doi.org/10.1007/s00775-018-1600-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-018-1600-6

Keywords

Navigation