Skip to main content
Log in

A stochastic control problem with delay arising in a pension fund model

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

This paper deals with the optimal control of a stochastic delay differential equation arising in the management of a pension fund with surplus. The problem is approached by the tool of a representation in infinite dimension. We show the equivalence between the one-dimensional delay problem and the associated infinite-dimensional problem without delay. Then we prove that the value function is continuous in this infinite-dimensional setting. These results represent a starting point for the investigation of the associated infinite-dimensional Hamilton–Jacobi–Bellman equation in the viscosity sense and for approaching the problem by numerical algorithms. Also an example with complete solution of a simpler but similar problem is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asea, P.K., Zak, P.J.: Time-to-build and cycles. J. Econ. Dyn. Control 23, 1155–1175 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bambi, M.: Endogenous growth and time to build: the AK case. J. Econ. Dyn. Control 32, 1015–1040 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barles, G., Souganidis, P.E.: Convergence of approximation schemes for fully nonlinear second order equations. Asymptot. Anal. 4, 271–283 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Bensoussan, A., Da Prato, G., Delfour, M.C., Mitter, S.K.: Representation and Control of Infinite Dimensional Systems, 2nd edn. Birkhäuser, Basel (2007)

    MATH  Google Scholar 

  5. Boulier, J.F., Huang, S.J., Taillard, G.: Optimal management under stochastic interest rates: the case of a protected pension fund. Insur. Math. Econ., 28, 173–189 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brace, A., Ga̧tarek, D., Musiela, M.: The market model of interest rate dynamics. Math. Finance 7, 127–155 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cairns, A.J.G., Blake, D., Dowd, K.: Stochastic lifestyling: optimal dynamic asset allocation for defined contribution pension plans. J. Econ. Dyn. Control 30, 843–877 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cannarsa, P., Da Prato, G.: Second-order Hamilton–Jacobi equations in infinite dimensions. SIAM J. Control Optim. 29, 474–492 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cannarsa, P., Gozzi, F., Soner, H.M.: A boundary-value problem for Hamilton–Jacobi equations in Hilbert spaces. Appl. Math. Optim., 24, 197–220 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chang, M.H., Pang, T., Pemy, M.: Finite difference approximations for stochastic control systems with delay. Stoch. Anal. Appl. 26, 451–470 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chojnowska-Michalik, A.: Representation theorem for general stochastic delay equations. Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 26, 635–642 (1978)

    MathSciNet  MATH  Google Scholar 

  12. Da Prato, G., Barbu, V.: Hamilton–Jacobi Equation in Hilbert Spaces. Pitman Advanced Publications Program. Pitman, London (1983)

    Google Scholar 

  13. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  14. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite Dimensional Systems. London Mathematical Society Lecture Note Series, vol. 229. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  15. Deelstra, G., Grasselli, M., Koehl, P.F.: Optimal design of a guarantee for defined contribution funds. J. Econ. Dyn. Control, 28, 2239–2260 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Di Giacinto, M., Federico, S., Gozzi, F.: Pension funds with a minimum guarantee: A stochastic control approach. Finance Stoch. (2010). doi:10.1007/s00780-010-0127-7

    Google Scholar 

  17. Ekeland, I., Taflin, E.: A theory of bond portfolios. Ann. Appl. Probab. 15, 1260–1305 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ekeland, I., Temam, R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)

    MATH  Google Scholar 

  19. El Karoui, N., Jeanblanc, M., Lacoste, V.: Optimal portfolio management with American capital guarantee. J. Econ. Dyn. Control, 29, 449–468 (2005)

    Article  MATH  Google Scholar 

  20. Elsanousi, I., Øksendal, B., Sulem, A.: Some solvable stochastic control problems with delay. Stoch. Stoch. Rep., 71, 69–89 (2000)

    Google Scholar 

  21. Federico, S.: Stochastic optimal control problems for pension funds management. PhD Thesis, Scuola Normale Superiore (2009). http://sfederico.altervista.org/

  22. Federico, S., Øksendal, B.: Optimal stopping of stochastic differential equations with delay driven by a Lévy noise. Potential Anal. (2010). doi:10.1007/s11118-010-9187-8. http://www.cma.uio.no/reports/preprints/

    Google Scholar 

  23. Federico, S., Goldys, B., Gozzi, F.: HJB equations for the optimal control of differential equations with delays and state constraints, I: regularity and applications. SIAM J. Control Optim. 48(8), 4821–5546 (2010)

    Article  MathSciNet  Google Scholar 

  24. Federico, S., Goldys, B., Gozzi, F.: HJB equations for the optimal control of differential equations with delays and state constraints, II: optimal feedbacks and approximations. SIAM J. Control Optim. (2009, submitted). arXiv:0907.1603

  25. Filipović, D.: Consistency Problems for Heath–Jarrow–Morton Interest Rate Models. Lecture Notes in Mathematics, vol. 1760. Springer, Berlin (2001)

    MATH  Google Scholar 

  26. Fischer, M., Nappo, G.: Time discretisation and rate of convergence for the optimal control of continuous-time stochastic systems with delay. Appl. Math. Optim. 57, 177–206 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Fischer, M., Reiss, M.: Discretisation of stochastic control problems for continuous time dynamics with delay. J. Comput. Appl. Math. 205, 969–981 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gabay, D., Grasselli, M.: Fair demographic risk sharing in defined contribution pension funds. Working paper ESILV (2010). http://papers.ssrn.com/sol3/papers.cfm?abstract_id=1667579

  29. Gerrard, R., Haberman, S., Vigna, E.: Optimal investment choices post retirement in a defined contribution pension scheme. Insur. Math. Econ. 35, 321–342 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Goldys, B., Musiela, M., Sondermann, D.: Lognormality of rates and term structure models. Stoch. Anal. Appl. 18, 375–396 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gozzi, F., Marinelli, C.: Stochastic optimal control of delay equations arising in advertising models. In: Da Prato, G., Tubaro, L. (eds.) Stochastic Partial Differential Equations and Applications VII. Lecture Notes in Pure and Applied Mathematics, vol. 245, pp. 133–148. Chapman & Hall, London (2006)

    Chapter  Google Scholar 

  32. Gozzi, F., Marinelli, C., Savin, S.: On controlled linear diffusions with delay in a model of optimal advertising under uncertainty with memory effects. J. Optim. Theory Appl. 142, 291–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Heath, D.C., Jarrow, R.A., Morton, A.: Bond pricing and term structures of interest rates: a new methodology for contingent claim valuation. Econometrica 60, 77–105 (1992)

    Article  MATH  Google Scholar 

  34. Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1991)

    Book  MATH  Google Scholar 

  35. Kelome, D., Swiech, A.: Viscosity solution of an infinite-dimensional Black–Scholes–Barenblatt equation. Appl. Math. Optim. 47, 253–278 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kocan, M., Soravia, P.: A viscosity approach to infinite-dimensional Hamilton–Jacobi equations arising in optimal control with state constraints. SIAM J. Control Optim. 36, 1348–1375 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kolmanovskii, V.B., Shaikhet, L.E.: Control of Systems with Aftereffect. Translations of Mathematical Monographs, vol. 157. American Mathematical Society, Providence (1996)

    Google Scholar 

  38. Kushner, H.J.: Probability Methods for Approximations in Stochastic Control and for Elliptic Equations. Academic Press, New York (1977)

    MATH  Google Scholar 

  39. Kushner, H.J.: Numerical approximations for stochastic systems with delays in the state and control. Stochastics 78, 343–376 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Kydland, F.E., Prescott, E.C.: Time-to-build and aggregate fluctuations. Econometrica 50, 1345–1370 (1982)

    Article  MATH  Google Scholar 

  41. Larssen, B.: Dynamic programming in stochastic control of systems with delay. Stoch. Stoch. Rep. 74, 651–673 (2002)

    MathSciNet  MATH  Google Scholar 

  42. Larssen, B., Risebro, N.H.: When are HJB equations for control problems with stochastic delay equations finite dimensional? Stoch. Anal. Appl. 21, 643–671 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Mohammed, S.E.: Stochastic Functional Differential Equations. Research Notes in Mathematics, vol. 99. Pitman, London (1984)

    MATH  Google Scholar 

  44. Øksendal, B., Sulem, A.: A maximum principle for optimal control of stochastic systems with delay with applications to finance. In: Menaldi, J.L., Rofman, E., Sulem, A. (eds.) Optimal Control and PDE. Essays in Honour of Alain Bensoussan, pp. 64–79. IOS Press, Amsterdam (2001)

    Google Scholar 

  45. Øksendal, B., Zhang, H.: Optimal control with partial information for stochastic Volterra equations. Int. J. Stoch. Anal. 2010, 329185 (2010). doi:10.1155/2010/329185

    Google Scholar 

  46. Sbaraglia, S., Papi, M., Briani, M., Bernaschi, M., Gozzi, F.: A model for the optimal asset-liability management for insurance companies. Int. J. Theor. Appl. Finance 6, 277–299 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Vargiolu, T.: Invariant measures for the Musiela equation with deterministic diffusion term. Finance Stoch. 3, 483–492 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  48. Vinter, R.B., Kwong, R.H.: The infinite time quadratic control problem for linear systems with state and control delays: An evolution equation approach. SIAM J. Control Optim. 19, 139–153 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  49. Yong, J., Zhou, X.Y.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer, New York (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Federico.

Additional information

Dedicated to my father.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Federico, S. A stochastic control problem with delay arising in a pension fund model. Finance Stoch 15, 421–459 (2011). https://doi.org/10.1007/s00780-010-0146-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-010-0146-4

Keywords

Mathematics Subject Classification (2000)

JEL Classification

Navigation