Skip to main content
Log in

Discretely monitored first passage problems and barrier options: an eigenfunction expansion approach

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

This paper develops an eigenfunction expansion approach to solve discretely monitored first passage time problems for a rich class of Markov processes, including diffusions and subordinate diffusions with jumps, whose transition or Feynman–Kac semigroups possess eigenfunction expansions in \(L^{2}\)-spaces. Many processes important in finance are in this class, including OU, CIR, (JD)CEV diffusions and their subordinate versions with jumps. The method represents the solution to a discretely monitored first passage problem in the form of an eigenfunction expansion with expansion coefficients satisfying an explicitly given recursion. A range of financial applications is given, drawn from across equity, credit, commodity, and interest rate markets. Numerical examples demonstrate that even in the case of frequent barrier monitoring, such as daily, approximating discrete first passage time problems with continuous solutions may result in unacceptably large errors in financial applications. This highlights the relevance of the method to financial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  2. Ahn, D.H., Gao, B.: A parametric nonlinear model of term structure dynamics. Rev. Financ. Stud. 12, 721–762 (1999)

    Article  Google Scholar 

  3. Albanese, C., Kuznetsov, A.: Unifying the three volatility models. Risk 17(3), 94–98 (2004)

    Google Scholar 

  4. Alili, L., Kyprianou, A.E.: Some remarks on first passage of Lévy processes, the American put and pasting principles. Ann. Appl. Probab. 15, 2062–2080 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Alili, L., Patie, P., Pedersen, J.L.: Representations of the first hitting time density of an Ornstein–Uhlenbeck process. Stoch. Models 21, 967–980 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barndorff-Nielsen, O.E.: Processes of normal inverse Gaussian type. Finance Stoch. 2, 41–68 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barndorff-Nielsen, O.E., Levendorskiĭ, S.: Feller processes of normal inverse Gaussian type. Quant. Finance 1, 318–331 (2001)

    Article  MathSciNet  Google Scholar 

  8. Beaglehole, D.R., Tenney, M.: A nonlinear equilibrium model of the term structure of interest rates: corrections and additions. J. Financ. Econ. 32, 345–353 (1992)

    Article  Google Scholar 

  9. Borodin, A., Salminen, P.: Handbook of Brownian Motion—Facts and Formulae. Birkhäuser, Basel (2002)

    Book  MATH  Google Scholar 

  10. Boyarchenko, M., Levendorskiĭ, S.: Valuation of continuously monitored double barrier options and related securities. Math. Finance 22, 419–444 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Boyarchenko, N., Levendorskiĭ, S.: The eigenfunction expansion method in multifactor quadratic term structure models. Math. Finance 17, 503–539 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Boyarchenko, S., Levendorskiĭ, S.: Barrier options and touch-and-out options under regular Lévy processes of exponential type. Ann. Appl. Probab. 12, 1261–1298 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Brigo, D., Mercurio, F.: Interest Rate Models—Theory and Practice, 2nd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  14. Broadie, M., Glasserman, P., Kou, S.G.: A continuity correction for discrete barrier options. Math. Finance 7, 325–348 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Broadie, M., Glasserman, P., Kou, S.G.: Connecting discrete and continuous path-dependent options. Finance Stoch. 3, 55–82 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Broadie, M., Yamamoto, Y.: A double-exponential fast Gauss transform algorithm for pricing discrete path-dependent options. Oper. Res. 53, 764–779 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Carr, P., Linetsky, V.: A jump to default extended CEV model: an application of Bessel processes. Finance Stoch. 10, 303–330 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, A., Feng, L., Song, R.: On the monitoring error of the supremum of a normal jump-diffusion process. J. Appl. Probab. 48, 1021–1034 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Collin-Dufresne, P., Goldstein, R.S.: Do credit spreads reflect stationary leverage ratios? J. Finance 56, 1929–1957 (2001)

    Article  Google Scholar 

  20. Cox, J.C.: Notes on option pricing I: constant elasticity of variance diffusions. Working paper, Stanford University (1975) (Reprinted in J. Portf. Manag. 22, 15–17 (1996))

  21. Cox, J.C., Ingersoll, J.E., Ross, S.A.: A theory of the term structure of interest rates. Econometrica 53, 385–407 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Davies, E.B.: Linear Operators and Their Spectra. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  23. Davydov, D., Linetsky, V.: Pricing and hedging path-dependent options under the CEV process. Manag. Sci. 47, 949–965 (2001)

    Article  MATH  Google Scholar 

  24. Davydov, D., Linetsky, V.: Pricing options on scalar diffusions: an eigenfunction expansion approach. Oper. Res. 51, 185–209 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. De Innocentis, M., Levendorskiĭ, S.: Pricing discrete barrier options and credit default swaps under Lévy processes. Quant. Finance 14, 1337–1365 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dia, E.H.A., Lamberton, D.: Connecting discrete and continuous lookback or hindsight options in exponential Lévy models. Adv. Appl. Probab. 43, 1136–1165 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dia, E.H.A., Lamberton, D.: Continuity correction for barrier options in jump-diffusion models. SIAM J. Financ. Math. 2, 866–900 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Feng, L., Linetsky, V.: Pricing discretely monitored barrier options and defaultable bonds in Lévy process models: a fast Hilbert transform approach. Math. Finance 18, 337–384 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Feng, L., Linetsky, V.: Computing exponential moments of the discrete maximum of a Lévy process and lookback options. Finance Stoch. 13, 501–529 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, 2nd edn. de Gruyter, Berlin (2011)

    MATH  Google Scholar 

  31. Fulton, C., Pruess, S.: Eigenvalue and eigenfunction asymptotics for regular Sturm–Liouville problems. J. Math. Anal. Appl. 188, 297–340 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  32. Fusai, G., Abrahams, I.D., Sgarra, C.: An exact analytical solution for discrete barrier options. Finance Stoch. 10, 1–26 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fusai, G., Recchioni, M.C.: Analysis of quadrature methods for pricing discrete barrier options. J. Econ. Dyn. Control 31, 826–860 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Geman, H.: Commodities and Commodity Derivatives: Modeling and Pricing for Agriculturals, Metals and Energy. Wiley, Hoboken (2005)

    Google Scholar 

  35. Göing-Jaeschke, A., Yor, M.: A clarification about hitting time densities for Ornstein–Uhlenbeck processes. Finance Stoch. 7, 413–415 (2003)

    Article  MATH  Google Scholar 

  36. Gorovoi, V., Linetsky, V.: Black’s model of interest rates as options, eigenfunction expansion and Japanese interest rates. Math. Finance 14, 49–78 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hörfelt, P.: Extension of the corrected barrier approximation by Broadie, Glasserman and Kou. Finance Stoch. 7, 231–243 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  38. Howison, S., Steinberg, M.: A matched asymptotic expansions approach to continuity corrections for discretely sampled options. Part 1: barrier options. Appl. Math. Finance 14, 63–89 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  39. Karlin, S., Taylor, H.M.: A Second Course in Stochastic Processes. Academic Press, New York (1981)

    MATH  Google Scholar 

  40. Keilson, J., Ross, H.F.: Passage time distributions for Gaussian Markov (Ornstein–Uhlenbeck) statistical processes. In: Selected Tables in Mathematical Statistics, vol. III, pp. 233–259. Am. Math. Soc., Providence (1975)

    Google Scholar 

  41. Koekoek, R., Lesky, P.A., Swarttouw, R.F.: Hypergeometric Orthogonal Polynomials and Their \(q\)-Analogues. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  42. Kou, S.G.: On pricing of discrete barrier options. Stat. Sin. 13, 955–964 (2003)

    MathSciNet  MATH  Google Scholar 

  43. Kou, S.G., Wang, H.: First passage times of a jump diffusion process. Adv. Appl. Probab. 35, 504–531 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  44. Kuan, C.H., Webber, N.: Pricing barrier options with one-factor interest rate models. J. Deriv. 10(4), 33–50 (2003)

    Article  Google Scholar 

  45. Kuznetsov, A., Kyprianou, A.E., Pardo, J.C.: Meromorphic Lévy processes and their fluctuation identities. Ann. Appl. Probab. 22, 1101–1135 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Leblanc, B., Renault, O., Scaillet, O.: A correction note on the first passage time of an Ornstein–Uhlenbeck process to a boundary. Finance Stoch. 4, 109–111 (2000)

    Article  MATH  Google Scholar 

  47. Leblanc, B., Scaillet, O.: Path-dependent options on yield in the affine term structure model. Finance Stoch. 2, 349–367 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  48. Leippold, M., Wu, L.: Asset pricing under the quadratic class. J. Financ. Quant. Anal. 37, 271–295 (2002)

    Article  Google Scholar 

  49. Li, J., Li, L., Mendoza-Arriaga, R.: Additive subordination and its applications in finance (2014), preprint, available at SSRN, http://ssrn.com/abstract=2470859

  50. Li, L., Linetsky, V.: Optimal stopping and early exercise: an eigenfunction expansion approach. Oper. Res. 61, 625–643 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Li, L., Linetsky, V.: Time-changed Ornstein–Uhlenbeck processes and their applications in commodity derivative models. Math. Finance 24, 289–330 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. Li, L., Mendoza-Arriaga, R.: Ornstein–Uhlenbeck processes time changed with additive subordinators and their applications in commodity derivative models. Oper. Res. Lett. 41, 521–525 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Lim, D., Li, L., Linetsky, V.: Evaluating callable and putable bonds: an eigenfunction expansion approach. J. Econ. Dyn. Control 36, 1888–1908 (2012)

    Article  MathSciNet  Google Scholar 

  54. Linetsky, V.: Computing hitting time densities for CIR and OU diffusions: applications to mean reverting models. J. Comput. Finance 7, 1–22 (2004)

    MathSciNet  Google Scholar 

  55. Linetsky, V.: The spectral decomposition of the option value. Int. J. Theor. Appl. Finance 7, 337–384 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  56. Linetsky, V.: Pricing equity derivatives subject to bankruptcy. Math. Finance 16, 255–282 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  57. Linetsky, V.: Spectral methods in derivatives pricing. In: Birge, J.R., Linetsky, V. (eds.) Handbook of Financial Engineering, Handbooks in Operations Research and Management Sciences, pp. 213–289. Elsevier, Amsterdam (2008). Chap. 6

    Google Scholar 

  58. McKean, H.: Elementary solutions for certain parabolic partial differential equations. Trans. Am. Math. Soc. 82, 519–548 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  59. Mendoza-Arriaga, R., Carr, P., Linetsky, V.: Time changed Markov processes in unified credit-equity modeling. Math. Finance 20, 527–569 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  60. Mendoza-Arriaga, R., Linetsky, V.: Pricing equity default swaps under the jump-to-default extended CEV model. Finance Stoch. 15, 513–540 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  61. Mendoza-Arriaga, R., Linetsky, V.: Multivariate subordination of Markov processes with financial applications. Math. Finance (2014). doi:10.1111/mafi.12061

    MATH  Google Scholar 

  62. Mendoza-Arriaga, R., Linetsky, V.: Time-changed CIR default intensities with two-sided mean-reverting jumps. Ann. Appl. Probab. 24, 811–856 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  63. Mijatović, A., Pistorius, M.: Continuously monitored barrier options under Markov processes. Math. Finance 23, 1–38 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  64. Nikiforov, A.F., Uvarov, V.B.: Special Functions of Mathematical Physics: A Unified Introduction with Applications. Birkhäuser, Basel (1988)

    Book  MATH  Google Scholar 

  65. Petrella, G., Kou, S.G.: Numerical pricing of discrete barrier and lookback options via Laplace transforms. J. Comput. Finance 8, 1–37 (2004)

    Google Scholar 

  66. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series, vol. 2, Gordon & Breach, New York (1986)

    MATH  Google Scholar 

  67. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Vol. 1: Functional Analysis. Academic Press, San Diego (1980)

    MATH  Google Scholar 

  68. Ricciardi, L.M., Sato, S.: First-passage-time density and moments of the Ornstein–Uhlenbeck process. J. Appl. Probab. 25, 43–57 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  69. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  70. Schilling, R., Song, R., Vondraček, Z.: Bernstein Functions: Theory and Applications. de Gruyter, Berlin (2010)

    MATH  Google Scholar 

  71. Vasiček, O.: An equilibrium characterisation of the term structure. J. Financ. Econ. 5, 177–188 (1977)

    Article  Google Scholar 

  72. Wong, E.: The construction of a class of stationary Markov processes. In: Bellman, R. (ed.) Sixteenth Symposium in Applied Mathematics—Stochastic Processes in Mathematical Physics and Engineering, pp. 264–276. Am. Math. Soc., Providence (1964)

    Chapter  Google Scholar 

  73. Yi, C.: On the first passage time distribution of an Ornstein–Uhlenbeck process. Quant. Finance 10, 957–960 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingfei Li.

Additional information

The research of the first author was supported by the Chinese University of Hong Kong Direct Grant for Research (project code 4055005). The research of the second author was supported by the National Science Foundation under grant DMS-1109506.

Appendix: Supplementary proofs

Appendix: Supplementary proofs

Proof of Proposition 2.4

It is easy to see that we have \(\mathcal{P}^{\phi}_{t}\varphi_{n}(x)=e^{-\phi (\lambda_{n}^{d})t}\varphi_{n}(x)\) after subordination. Hence

$$ \operatorname {Tr}\mathcal{P}^{\phi}_{t}=\sum_{n=1}^{\infty}(\varphi_{n},\mathcal{P}^{\phi}_{t}\varphi_{n})=\sum_{n=1}^{\infty}e^{-\phi(\lambda_{n}^{d})t}. $$

We also note that

$$\begin{aligned} \mathcal{P}^{\phi}_{t}1_{A}(x)&=\int_{(0,\infty)}\mathcal{P}^{d}_{s}1_{A}(x)\pi _{t}(ds)=\int_{(0,\infty)}\int_{A}p^{d}_{s}(x,y)m(dy)\pi_{t}(ds)\\ &=\int_{A}\int_{(0,\infty)}p^{d}_{s}(x,y)\pi_{t}(ds)m(dy). \end{aligned}$$

Define \(p^{\phi}_{t}(x,y):=\int_{(0,\infty)}p^{d}_{s}(x,y)\pi_{t}(ds)\). It is clear that \(p^{\phi}_{t}(x,y)\) is symmetric. We want to show it is also jointly continuous in \(x\) and \(y\).

(i) \(\gamma>0\). Since \(\phi(\lambda)=\gamma\lambda+\int_{(0,\infty )}(1-e^{-\lambda s})\nu(ds)\), we have \(\phi(\lambda_{n}^{d})\geq\lambda _{n}^{d}\gamma t\). Hence

$$ \operatorname {Tr}\mathcal{P}^{\phi}_{t}=\sum_{n=1}^{\infty}e^{-\phi(\lambda_{n}^{d})t}\leq \sum_{n=1}^{\infty}e^{-\lambda_{n}^{d}\gamma t}=\operatorname {Tr}\mathcal{P}^{d}_{\gamma t}< \infty. $$

Applying Theorem 2.3 to \((\mathcal{P}^{d}_{t})_{t\geq0}\), the eigenfunctions satisfy

$$ |\varphi_{n}(x)|\leq e^{\lambda^{d}_{n}\gamma t/3}\sqrt{p^{d}_{2\gamma t/3}(x,x)}. $$
(A.1)

(A.1) implies

$$\begin{aligned} \sum_{n=1}^{\infty}e^{-\phi(\lambda^{d}_{n})t}\left|\varphi_{n}(x)\varphi _{n}(y)\right|\leq\sqrt{p^{d}_{2\gamma t/3}(x,x)p^{d}_{2\gamma t/3}(y,y)}\sum_{n=1}^{\infty}e^{-\phi(\lambda^{d}_{n})t}e^{2\gamma t\lambda^{d}_{n}/3}. \end{aligned}$$
(A.2)

From the expression of \(\phi\), \(\sum_{n=1}^{\infty}e^{-\phi(\lambda ^{d}_{n})t}e^{2\gamma t\lambda^{d}_{n}/3}<\infty\). This shows that

$$ \int_{(0,\infty)}\sum_{n=1}^{\infty}e^{-\lambda^{d}_{n} s}|\varphi _{n}(x)\varphi_{n}(y)|\pi_{t}(ds)< \infty. $$

So we can apply the dominated convergence theorem and get

$$\begin{aligned} p^{\phi}_{t}(x,y)&=\int_{(0,\infty)}p^{d}_{s}(x,y)\pi_{t}(ds)\\ &=\int_{(0,\infty)}\sum_{n=1}^{\infty}e^{-\lambda^{d}_{n} s}\varphi _{n}(x)\varphi_{n}(y)\pi_{t}(ds)=\sum_{n=1}^{\infty}e^{-\phi(\lambda ^{d}_{n})t}\varphi_{n}(x)\varphi_{n}(y). \end{aligned}$$

(A.2) also implies that \(\sum_{n=1}^{\infty}e^{-\phi (\lambda^{d}_{n})t}\varphi_{n}(x)\varphi_{n}(y)\) converges uniformly on compact sets to \(p^{\phi}_{t}(x,y)\). Since \(\varphi_{n}(x)\) is continuous by applying Theorem 2.3 to \((\mathcal{P}^{d}_{t})_{t\geq0}\), \(p^{\phi}_{t}(x,y)\) is jointly continuous in \(x\) and \(y\).

(ii) The condition in (ii) implies that \(\mathcal{P}^{\phi}_{t}\) is trace-class, and for \(x\) and \(y\) on compacts, \(\sum_{n=1}^{\infty}e^{-\phi(\lambda^{d}_{n})t}|\varphi_{n}(x)\varphi_{n}(y)|<\infty\). This allows us to apply the dominated convergence theorem, and the rest of the proof is similar to the case \(\gamma>0\). □

Proof of Theorem 2.7

Denote by \(\|f\|_{\infty}\) the \(L^{\infty}\)-norm of \(f\). For a given \(t\), from (2.6) in Theorem 2.3, \(|\varphi _{n}(x)|\leq e^{\lambda_{n}t'/2}\sqrt{p_{t'}(x,x)}\) for all \(t'\) such that \(0< t'< t\). Hence

$$\begin{aligned} |f_{n}|\leq\int_{I}|f(y)\varphi_{n}(y)|m(dy)\leq\|f\|_{\infty}e^{\lambda _{n}t'/2}\int_{\mathcal{S}_{f}}\sqrt{p_{t'}(y,y)}m(dy)< \infty. \end{aligned}$$
(A.3)

Together with the trace-class condition and our assumption, this implies that the quantity \(\int_{I}|f(y)|\sum_{n=1}^{\infty}e^{-\lambda_{n}t}|\varphi_{n}(x)\varphi_{n}(y)|m(dy)\) is finite. So by the dominated convergence theorem,

$$\begin{aligned} \mathcal{P}_{t}f(x)&=\int_{I} f(y)p_{t}(x,y)m(dy)=\int_{I} f(y)\sum _{n=1}^{\infty}e^{-\lambda_{n}t}\varphi_{n}(x)\varphi_{n}(y)m(dy)\\ &=\sum_{n=1}^{\infty}e^{-\lambda_{n}t}\varphi_{n}(x)\int_{I} f(y)\varphi _{n}(y)m(dy)=\sum_{n=1}^{\infty}f_{n}e^{-\lambda_{n}t}\varphi_{n}(x). \end{aligned}$$

We note that

$$\begin{aligned} &\int_{I}\bigg(\sum_{n=1}^{\infty}|f_{n}|e^{-\lambda_{n}t}|\varphi_{n}(x)|\bigg)^{2}m(dx)\\ &=\sum_{n=1}^{\infty}f_{n}^{2}e^{-2\lambda_{n}t} \leq\|f\|_{\infty}^{2}\bigg(\int_{\mathcal{S}_{f}}\sqrt {p_{t'}(y,y)}m(dy)\bigg)^{2}\sum_{n=1}^{\infty}e^{-\lambda_{n}(2t-t')} \end{aligned}$$

which is finite by (A.3) and the trace-class condition. Hence

$$ \int_{I}\big(\mathcal{P}_{t}f(x)\big)^{2}m(dx)\leq\int_{I}\bigg(\sum _{n=1}^{\infty}|f_{n}|e^{-\lambda_{n}t}|\varphi_{n}(x)|\bigg)^{2}m(dx)< \infty, $$

i.e. \(\mathcal{P}_{t}f\in L^{2}(I,m)\). Since

$$ \sum_{n=N}^{\infty}|f_{n}|e^{-\lambda_{n}t}|\varphi_{n}(x)|\leq\|f\|_{\infty }\sqrt{p_{t'}(x,x)}\int_{\mathcal{S}_{f}}\sqrt{p_{t'}(y,y)}m(dy)\sum _{n=N}^{\infty}e^{-\lambda_{n}(t-t')} $$

is finite and \(p_{t'}(x,x)\) is continuous in \(x\), the convergence in (2.7) is uniform on compact sets and \(\mathcal {P}_{t}f(x)\) is continuous due to the continuity of \(\varphi_{n}(x)\). We also note that \(\|\sum_{n=N+1}^{\infty}f_{n}e^{-\lambda_{n}t}\varphi_{n}(x)\|=\sum _{n=N+1}^{\infty}f^{2}_{n}e^{-2\lambda_{n}t}\rightarrow0 \text{ as } N\rightarrow\infty\). Therefore, the convergence is also in \(L^{2}\). □

Proof of Proposition 4.1

Note that \(\varphi^{2}_{n}(x)=A^{\nu}|\mu+b|x^{2}\frac{n!}{\varGamma(\nu +n+1)}(L_{n}^{\nu}(x))^{2}\). From [1, 22.14.13], we have \(|L^{\nu}_{n}(x)|\leq\frac{\varGamma(\nu+n+1)}{n!\varGamma(\nu+1)}e^{\frac {x}{2}}\) for \(x\geq0\). Hence

$$ \varphi^{2}_{n}(x)\leq A^{\nu}|\mu+b|x^{2}\frac{\varGamma(\nu +n+1)}{n!(\varGamma(\nu+1))^{2}}e^{Ax^{-2\beta}}. $$

Therefore, we have

$$ \sqrt{p_{t}(x,x)}\leq\frac{A^{\frac{\nu}{2}}\sqrt{|\mu+b|}}{\varGamma(\nu +1)}\sqrt{\sum_{n=0}^{\infty}e^{-\lambda_{n}t}\frac{\varGamma(\nu +n+1)}{n!}}xe^{Ax^{-2\beta}/2}. $$

Since \(\frac{\varGamma(\nu+n+1)}{n!}\sim n^{\nu}\) as \(n\rightarrow\infty \), condition (4.4) implies \(\sum_{n=0}^{\infty}e^{-\lambda_{n}t}\frac{\varGamma(\nu+n+1)}{n!}<\infty\) in the above. To prove the conclusion, note that when \(\mu +b<0\), we obtain that \(\int_{0}^{\infty}xe^{Ax^{-2\beta }/2}m(dx)<\infty\). When \(\mu+b>0\), for any \(S\) bounded above, we have \(\int _{S}xe^{-Ax^{-2\beta}/2}m(dx)<\infty\). □

Proof of Proposition 4.3

The calculation is based on the following identities and then simplification:

$$\begin{gathered} \int_{0}^{x} y^{\gamma}e^{-ay^{\delta}}L^{(\alpha)}_{n}(ay^{\delta})dy=\frac {(\alpha+1)_{n}}{n!(\gamma+1)}x^{\gamma+1}\,_{2}F_{2}\bigg( \textstyle\begin{array}{ll}\alpha+n+1,&\frac{\gamma+1}{\delta}\\ \alpha+1,&\frac{\gamma+1}{\delta}+1 \end{array}\displaystyle ;-ax^{\delta}\bigg),\\ \int_{0}^{x} y^{\gamma}L^{(\alpha)}_{n}(ay^{\delta})dy=\frac{(\alpha +1)_{n}}{n!(\gamma+1)}x^{\gamma+1}\,_{2}F_{2}\bigg( \textstyle\begin{array}{ll}-n,&\frac{\gamma+1}{\delta}\\ \alpha+1,&\frac{\gamma+1}{\delta}+1 \end{array}\displaystyle ;ax^{\delta}\bigg). \end{gathered}$$

They can be obtained from [66, Eq. (1.14.3.3) and Eq. (1.14.3.7)] by a change of variable. In the simplification procedure, we use \(_{2}F_{2}\left(a_{1},a;b_{1},a;x\right )= {}_{1}F_{1}\left(a_{1};b_{1};x\right)\) and \(_{1}F_{1}(-n;\alpha+1;x)=\frac {\varGamma(n+1)}{(\alpha+1)_{n}}L_{n}^{(\alpha)}(x)\). □

Proof of Proposition 4.4

Define \(S(x,h)=\mathbb{P}_{x}[\zeta>h]\). Then

$$D^{h}_{n}(0,u)=\int_{0}^{u}\varphi_{n}(x)m(dx)-\int_{0}^{u}S(x,h)\varphi_{n}(x)m(dx). $$

The first term is already calculated in Proposition 4.3. For the second term, we note that when \(\mu+b<0\),

$$ S(x,h)=\frac{A^{\frac{\nu}{2}-\frac{c}{|\beta|}}\varGamma(\frac {c}{|\beta|}+1)}{\sqrt{|\mu+b|}}\sum_{n=0}^{\infty}e^{-\lambda_{n}h}\frac {(\frac{1}{2|\beta|})_{n}}{\sqrt{n!\varGamma(\nu+n+1)}}\varphi_{n}(x). $$

From this we can easily derive the expression for the second term by interchanging integration and summation, using the continuity of inner products. For \(\mu+b>0\),

$$\begin{aligned} S(x,h) =&A^{\frac{1}{2|\beta|}}\frac{\varGamma(1+\frac{c}{|\beta |})}{\varGamma(\nu+1)}\\ &{}\times\sum_{m=0}^{\infty}e^{-(b+\omega m)h}\frac{(\frac{1}{2|\beta |})_{m}}{m!}xe^{-Ax^{-2\beta}}\,_{1}F_{1}\Big(1-m+\frac{c}{|\beta|};\nu +1;Ax^{-2\beta}\Big). \end{aligned}$$

Again the second term can be calculated by interchanging integration and summation since the above series converges uniformly on \((0,u)\). The only thing left to compute is \(d_{m,n}(0,u)\). By change of variable,

$$\begin{aligned} d_{m,n}(0,u) =&A^{-\nu}\sqrt{\frac{n!}{|\mu+b|\varGamma(\nu+n+1)}}\\ &{}\times\int_{0}^{Au^{-2\beta}}y^{\nu}e^{-y}L^{(\nu)}_{n}(y)\,_{1}F_{1}\Big(1-m+\frac{c}{|\beta|};\nu+1;y\Big)dy. \end{aligned}$$

We denote the above integral by \(I\). To calculate \(I\), we use the following identities:

$$\begin{aligned} &\frac{d(\,_{1}F_{1}(a,b,y))}{dy}=\frac{a}{b}\,_{1}F_{1}(a+1;b+1;y), \end{aligned}$$
(A.4)
$$\begin{aligned} &\frac{d(y^{b-1}e^{-y}\,_{1}F_{1}(a,b,y))}{dy}=(b-1)e^{-y}y^{b-2}\, _{1}F_{1}(a-1;b-1;y), \end{aligned}$$
(A.5)
$$\begin{aligned} &\frac{dL^{(\nu)}_{n}(y)}{dy}=-L^{(\nu+1)}_{n-1}(y),\quad n\geq1, \end{aligned}$$
(A.6)
$$\begin{aligned} &\frac{d(e^{-y}y^{\nu}L^{(\nu)}_{n}(y))}{dy}=(n+1)e^{-y}y^{\nu-1}L^{(\nu -1)}_{n+1}(y). \end{aligned}$$
(A.7)

For \(n=0\), by (A.5),

$$ I=\frac{1}{\nu+1}(Au^{-2\beta})^{\nu+1}e^{-Au^{-2\beta}}\,_{1}F_{1}\Big(2-m+\frac{c}{|\beta|};\nu+2;Au^{-2\beta}\Big). $$

For \(n\geq1\), if \(\frac{c}{|\beta|}=m-n-1\), \(_{1}F_{1}(1-m+\frac{c}{|\beta |};\nu+1;y)=\frac{n!\varGamma(\nu+1)}{\varGamma(\nu+1+n)}L_{n}^{(\nu )}(y)\). Hence

$$ I=\frac{n!\varGamma(\nu+1)}{\varGamma(\nu+1+n)}\int_{0}^{Au^{-2\beta }}y^{\nu}e^{-y}\big(L^{(\nu)}_{n}(y)\big)^{2}dy=\varGamma(\nu+1)\pi_{n,n}(0,u). $$

If \(\frac{c}{|\beta|}\neq m-n-1\), by (A.5), integration by parts and (A.6), we get

$$\begin{aligned} I =&\frac{1}{\nu+1}(Au^{-2\beta})^{\nu+1}e^{-Au^{-2\beta}}L_{n}^{(\nu )}(Au^{-2\beta})\,_{1}F_{1}\Big(2-m+\frac{c}{|\beta|};\nu+2;Au^{-2\beta}\Big) \\ &{}+\frac{1}{\nu+1}\int_{0}^{Au^{-2\beta}}y^{\nu+1}e^{-y}L_{n-1}^{(\nu +1)}(y)\,_{1}F_{1}\Big(2-m+\frac{c}{|\beta|};\nu+2;y\Big)dy. \end{aligned}$$
(A.8)

By (A.7), integration by parts and (A.4), we can also obtain

$$\begin{aligned} I =&\frac{1}{n}(Au^{-2\beta})^{\nu+1}e^{-Au^{-2\beta}}L_{n-1}^{(\nu +1)}(Au^{-2\beta})\,_{1}F_{1}\Big(1-m+\frac{c}{|\beta|};\nu+1;Au^{-2\beta }\Big) \\ &{}-\frac{1-m+\frac{c}{|\beta|}}{n(\nu+1)}\int_{0}^{Au^{-2\beta}}y^{\nu +1}e^{-y}L_{n-1}^{(\nu+1)}(y)\,_{1}F_{1}\Big(2-m+\frac{c}{|\beta|};\nu +2;y\Big)dy.\quad \end{aligned}$$
(A.9)

Multiplying (A.8) by \(\frac{1-m+c/|\beta|}{n(\nu+1)}\), adding it to (A.9) and simplifying gives the expression for \(I\). □

Proof of Proposition 4.5

$$\begin{aligned} f_{n}(\ell,u) =&\int_{\tilde{\ell}}^{\tilde{u}}\big(P(x,t,T)-K\big)\varphi _{n}(x)m(dx)\\ =&\int_{\tilde{\ell}}^{\tilde{u}}\sum_{m=0}^{\infty}p_{m}e^{-\lambda _{m}(T-t)}\varphi_{m}(x)\varphi_{n}(x)m(dx)-K\int_{\tilde{\ell}}^{\tilde {u}}\varphi_{n}(x)m(dx)\\ =&\sum_{m=0}^{\infty}p_{m}e^{-\lambda_{m}(T-t)}\int_{\tilde{\ell}}^{\tilde {u}}\varphi_{m}(x)\varphi_{n}(x)m(dx)\\ &{}-K\frac{\sigma}{\sqrt{2}}\left(\frac{2\gamma}{\sigma^{2}}\right)^{\frac {b}{2}}\int_{\tilde{\ell}}^{\tilde{u}}e^{(\kappa-\gamma)x/\sigma^{2}}\ell _{n}^{(b-1)}\bigg(\frac{2\gamma x}{\sigma^{2}}\bigg)\frac{2}{\sigma ^{2}}x^{b-1}e^{-\frac{2\kappa x}{\sigma^{2}}}dx\\ =&\sum_{m=0}^{\infty}p_{m}e^{-\lambda_{m}(T-t)}\pi^{(b-1)}_{m,n}(\tilde{\ell },\tilde{u})\\ &{}-K\frac{\sqrt{2}}{\sigma}\left(\frac{\sigma^{2}}{2\gamma}\right )^{b/2}\int_{\frac{2\gamma\tilde{\ell}}{\sigma^{2}}}^{\frac{2\gamma \tilde{u}}{\sigma^{2}}}e^{-\frac{\kappa+\gamma}{2\gamma}y}y^{b-1}\ell ^{(b-1)}_{n}(y)dy\\ =&\sum_{m=0}^{\infty}p_{m}e^{-\lambda_{m}(T-t)}\pi^{(b-1)}_{m,n}(\tilde{\ell },\tilde{u})\\ &{}-K\frac{\sqrt{2}}{\sigma}\left(\frac{\sigma^{2}}{2\gamma}\right)^{\frac {b}{2}}\left(\psi^{(b-1)}_{n}\left(\frac{\kappa+\gamma}{2\gamma},\frac {2\gamma\tilde{u}}{\sigma^{2}}\right)-\psi^{(b-1)}_{n}\bigg(\frac{\kappa +\gamma}{2\gamma},\frac{2\gamma\tilde{\ell}}{\sigma^{2}}\bigg)\right). \end{aligned}$$

The interchange of summation and integration in the second equality is justified by the continuity of inner products. The formula for \(g^{i}_{n}((\ell,u)^{c})\) is proved similarly using the identity \(\int _{0}^{\infty}e^{-sy}y^{\alpha}L_{n}^{(\alpha)}(y)dy=\frac{\varGamma(\alpha +n+1)(s-1)^{n}}{n!s^{\alpha+n+1}}\). The calculation of \(\psi_{n}^{(\nu )}(s,x)\) can be done similarly as in [53]. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Linetsky, V. Discretely monitored first passage problems and barrier options: an eigenfunction expansion approach. Finance Stoch 19, 941–977 (2015). https://doi.org/10.1007/s00780-015-0271-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-015-0271-1

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation