Skip to main content
Log in

Aggregation-robustness and model uncertainty of regulatory risk measures

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

Research related to aggregation, robustness and model uncertainty of regulatory risk measures, for instance, value-at-risk (VaR) and expected shortfall (ES), is of fundamental importance within quantitative risk management. In risk aggregation, marginal risks and their dependence structure are often modelled separately, leading to uncertainty arising at the level of a joint model. In this paper, we introduce a notion of qualitative robustness for risk measures, concerning the sensitivity of a risk measure to the uncertainty of dependence in risk aggregation. It turns out that coherent risk measures, such as ES, are more robust than VaR according to the new notion of robustness. We also give approximations and inequalities for aggregation and diversification of VaR under dependence uncertainty, and derive an asymptotic equivalence for worst-case VaR and ES under general conditions. We obtain that for a portfolio of a large number of risks, VaR generally has a larger uncertainty spread compared to ES. The results warn that unjustified diversification arguments for VaR used in risk management need to be taken with much care, and they potentially support the use of ES in risk aggregation. This in particular reflects on the discussions in the recent consultative documents by the Basel Committee on Banking Supervision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aas, K., Puccetti, G.: Bounds for total economic capital: the DNB case study. Extremes 17(4), 693–715 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Acerbi, C.: Spectral measures of risk: a coherent representation of subjective risk aversion. J. Bank. Finance 26, 1505–1518 (2002)

    Article  Google Scholar 

  3. Artzner, P., Delbaen, F., Eber, J.-M., Heath, D.: Coherent measures of risk. Math. Finance 9, 203–228 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. BCBS: Consultative Document May 2012. Fundamental review of the trading book. Basel Committee on Banking Supervision. Bank for International Settlements, Basel (2012). Available online http://www.bis.org/publ/bcbs219.htm

  5. BCBS: Consultative Document October 2013. Fundamental review of the trading book: a revised market risk framework. Basel Committee on Banking Supervision. Bank for International Settlements, Basel (2013). Available online http://www.bis.org/publ/bcbs265.htm

  6. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust Optimization. Princeton University Press, Princeton (2009)

    Book  MATH  Google Scholar 

  7. Bernard, C., Jiang, X., Wang, R.: Risk aggregation with dependence uncertainty. Insur. Math. Econ. 54, 93–108 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cambou, M., Filipović, D.: Model uncertainty and scenario aggregation. Math. Finance (2015, to appear). doi:10.1111/mafi.12097

    Google Scholar 

  9. Cheung, K.C., Lo, A.: General lower bounds on convex functionals of aggregate sums. Insur. Math. Econ. 53, 884–896 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cont, R., Deguest, R., Scandolo, G.: Robustness and sensitivity analysis of risk measurement procedures. Quant. Finance 10, 593–606 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Daníelsson, J., Jorgensen, B.N., Mandira, S., Samorodnitsky, G., de Vries, C.G.: Subadditivity re-examined: the case for Value-at-Risk. Discussion paper, 549. Financial Markets Group, London School of Economics and Political Science. Available online http://eprints.lse.ac.uk/24668

  12. EIOPA: Equivalence assessment of the Swiss supervisory system in relation to articles 172, 227 and 260 of the Solvency II Directive, EIOPA-BoS-11-028 (2011). Available online https://eiopa.europa.eu/Pages/SearchResults.aspx?k=filename:EIOPA-BoS-11-028-Swiss-Equivalence-advice.pdf

  13. Embrechts, P., Puccetti, G.: Bounds for functions of dependent risks. Finance Stoch. 10, 341–352 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Embrechts, P., Puccetti, G., Rüschendorf, L.: Model uncertainty and VaR aggregation. J. Bank. Finance 37, 2750–2764 (2013)

    Article  Google Scholar 

  15. Embrechts, P., Puccetti, G., Rüschendorf, L., Wang, R., Beleraj, A.: An academic response to Basel 3.5. Risks 2, 25–48 (2014)

    Article  Google Scholar 

  16. Emmer, S., Kratz, M., Tasche, D.: What is the best risk measure in practice? A comparison of standard measures. Preprint, ESSEC Business School (2014). Available online http://ssrn.com/abstract=2370378

  17. Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time, 3rd edn. de Gruyter, Berlin (2011)

    Book  MATH  Google Scholar 

  18. Gneiting, T.: Making and evaluating point forecasts. J. Am. Stat. Assoc. 106, 746–762 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hampel, F.: A general qualitative definition of robustness. Ann. Math. Stat. 42, 1887–1896 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hansen, L.P., Sargent, T.J.: Robustness. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  21. Huber, P.J., Ronchetti, E.M.: Robust Statistics, 2nd edn. Wiley Series in Probability and Statistics. Wiley, New York (2009)

    Book  MATH  Google Scholar 

  22. Jorion, P.: Value at Risk: The New Benchmark for Managing Financial Risk, 3rd edn. McGraw-Hill, New York (2006)

    Google Scholar 

  23. Kou, S., Peng, X.: On the measurement of economic tail risk. Preprint (2014). Available online arXiv:1401.4787

  24. Krätschmer, V., Schied, A., Zähle, H.: Qualitative and infinitesimal robustness of tail-dependent statistical functionals. J. Multivar. Anal. 103, 35–47 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Krätschmer, V., Schied, A., Zähle, H.: Comparative and quantitative robustness for law-invariant risk measures. Finance Stoch. 18, 271–295 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kusuoka, S.: On law invariant coherent risk measures. Adv. Math. Econ. 3, 83–95 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Makarov, G.D.: Estimates for the distribution function of the sum of two random variables with given marginal distributions. Theory Probab. Appl. 26, 803–806 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nelsen, R.: An Introduction to Copulas, 2nd edn. Springer, New York (2006)

    MATH  Google Scholar 

  29. Puccetti, G.: Sharp bounds on the expected shortfall for a sum of dependent random variables. Stat. Probab. Lett. 83, 1227–1232 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Puccetti, G., Rüschendorf, L.: Sharp bounds for sums of dependent risks. J. Appl. Probab. 50, 42–53 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  31. Puccetti, G., Rüschendorf, L.: Asymptotic equivalence of conservative value-at-risk- and expected shortfall-based capital charges. J. Risk 16(3), 1–19 (2014)

    Google Scholar 

  32. Puccetti, G., Wang, B., Wang, R.: Complete mixability and asymptotic equivalence of worst-possible VaR and ES estimates. Insur. Math. Econ. 53, 821–828 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rüschendorf, L.: Random variables with maximum sums. Adv. Appl. Probab. 14, 623–632 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sandström, A.: Handbook of Solvency for Actuaries and Risk Managers: Theory and Practice. Taylor & Francis, Florida (2010)

    Book  MATH  Google Scholar 

  35. SCOR: From Principle-Based Risk Management to Solvency Requirements, 2nd edn. SCOR, Zurich (2008). SCOR Switzerland AG. Available online http://www.scor.com/images/stories/pdf/scorpapers/sstbook_second_edition_final.pdf

    Google Scholar 

  36. van der Vaart, A.W.: Asymptotic Statistics. Cambridge University Press, Cambridge (1998)

    Book  MATH  Google Scholar 

  37. Wang, B., Wang, R.: The complete mixability and convex minimization problems for monotone marginal distributions. J. Multivar. Anal. 102, 1344–1360 (2011)

    Article  MATH  Google Scholar 

  38. Wang, B., Wang, R.: Extreme negative dependence and risk aggregation. J. Multivar. Anal. 136, 12–25 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  39. Wang, R.: Asymptotic bounds for the distribution of the sum of dependent random variables. J. Appl. Probab. 51, 780–798 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, R., Peng, L., Yang, J.: Bounds for the sum of dependent risks and worst Value-at-Risk with monotone marginal densities. Finance Stoch. 17, 395–417 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Wang, S.S., Young, V.R., Panjer, H.H.: Axiomatic characterization of insurance prices. Insur. Math. Econ. 21, 173–183 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank two referees, an Associate Editor and the Editor for helpful comments which have substantially improved the paper, and Edgars Jakobsons (ETH Zurich) for his kind help on some numerical examples in this paper. Paul Embrechts thanks the Oxford-Man Institute for its hospitality during his visit as 2014 Oxford-Man Chair. Ruodu Wang acknowledges financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC), and the Forschungsinstitut für Mathematik (FIM) at ETH Zurich during his visits in 2013 and 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruodu Wang.

Appendix: Proofs

Appendix: Proofs

1.1 A.1 A useful lemma

Before presenting the main proofs, we first state a lemma that is essential in proving the main results in Sects. 3 and 4 in this paper. Recall the definitions of the essential supremum and the essential infimum of random variables: for any random variable \(S\),

$$\begin{aligned} \mathrm {ess}\ \mathrm {sup}\mbox{ }S =&\sup\{t: \mathbb {P}[S\leqslant t]< 1\},\\ \mathrm {ess}\ \mathrm {inf}\mbox{ }S =&\inf\{t:\mathbb {P}[S\leqslant t]>0\}. \end{aligned}$$

We denote \(S_{n}=X_{1}+\cdots+X_{n}\) in the following. We remind the reader that this \(S_{n}\) is different from the symbolic one in the notation of \(\overline {\mathrm {VaR}}_{p}(S_{n})\). We hope this will not lead to notational confusion.

Lemma A.1

Suppose that \(F_{i},i\in \mathbb {N}\), is a sequence of distributions on \([0,1]\). Then there exist \(X_{i}\sim F_{i}\), \(i\in \mathbb {N}\), such that for each \(n\in \mathbb {N}\),

$$ \mathrm {ess}\ \mathrm {sup}\mbox{ }S_{n}-\mathrm {ess}\ \mathrm {inf}\mbox{ }S_{n}\leqslant1.$$

Proof

We first show that if \(X\) and \(Y\) are countermonotonic and both take values in \([0,1]\), then \(\mathrm {ess}\ \mathrm {sup}\mbox{ }(X+Y)-\mathrm {ess}\ \mathrm {inf}\mbox{ }(X+Y)\leqslant1\). Since \(X\) and \(Y\) are countermonotonic, there exists \(U\sim\mathrm{U}[0,1]\) such that \(X=F^{-1}(U)\) and \(Y=G^{-1}(1-U)\), where \(F\) and \(G\) are the distributions of \(X\) and \(Y\), respectively. For \(u,v \in(0,1)\), one of \(F^{-1}(u)-F^{-1}(v)\) and \(G^{-1}(1-u)-G^{-1}(1-v)\) is nonpositive. Hence,

$$\begin{aligned} &F^{-1}(u)+G^{-1}(1-u)-\big(F^{-1}(v)+G^{-1}(1-v)\big)\\ &=\big(F^{-1}(u)-F^{-1}(v)\big)+\big(G^{-1}(1-u)-G^{-1}(1-v)\big)\\ &\leqslant \max\{F^{-1}(u)-F^{-1}(v),G^{-1}(1-u)-G^{-1}(1-v)\}\\&\leqslant1. \end{aligned}$$

Thus,

$$\begin{aligned} & \mathrm {ess}\ \mathrm {sup}\mbox{ }(X+Y)-\mathrm {ess}\ \mathrm {inf}\mbox{ }(X+Y)\\ &=\sup_{u\in(0,1)}\{F^{-1}(u)+G^{-1}(1-u)\}-\inf_{v\in(0,1)}\{ F^{-1}(v)+G^{-1}(1-v)\}\leqslant1. \end{aligned}$$

Let \(X_{1} \sim F_{1}\). For \(k\geqslant 2\), choose \(X_{k}\) to be countermonotonic with \(S_{k-1}\). Since \(\mathrm {ess}\ \mathrm {sup}\mbox{ }(X_{1})-\mathrm {ess}\ \mathrm {inf}\mbox{ }(X_{1})\leqslant1\), by induction we get that

$$ \mathrm {ess}\ \mathrm {sup}\mbox{ }(S_{k})-\mathrm {ess}\ \mathrm {inf}\mbox{ }(S_{k})=\mathrm {ess}\ \mathrm {sup}\mbox{ }(S_{k-1}+X_{k})-\mathrm {ess}\ \mathrm {inf}\mbox{ }(S_{k-1}+X_{k})\leqslant1 $$

for all \(k\geqslant 2\). □

Remark A.2

Lemma A.1 is of independent interest in the theory of negative dependence. Indeed, it shows that an extremely negatively dependent sequence always exists for uniformly bounded marginal distributions. The definition of and details on extremely negative dependence can be found in Wang and Wang [38]. In the latter paper, it was shown that an extremely negatively dependent sequence always exists for identical marginal \(L_{1}\)-distributions. Lemma A.1, as a new contribution, confirms that the same statement holds for inhomogeneous marginal distributions if we assume uniform boundedness.

The following useful corollary is directly implied by Lemma A.1.

Corollary A.3

Suppose that \(F_{i},i\in \mathbb {N}\), is a sequence of distributions with bounded support. Then there exist \(X_{i}\sim F_{i}\), \(i\in \mathbb {N}\), such that for each \(n\in \mathbb {N}\),

$$|S_{n}-\mathbb {E}[S_{n}]|\leqslant L_{n}.$$

where \(L_{n}\) is the largest length of the support of \(F_{i}, i=1,\dots,n\), that is,

$$ L_{n}=\max\{\mathrm {ess}\ \mathrm {sup}\mbox{ }X_{i}-\mathrm {ess}\ \mathrm {inf}\mbox{ }X_{i}:X_{i}\sim F_{i}, i=1,\dots,n\}. $$

1.2 A.2 Proof of Theorem 2.3

Proof

Suppose \(\rho\) is a coherent distortion risk measure with distortion function \(h\). Since \(h\) is increasing and convex on (0,1), its has a left derivative on \((0,1)\), denoted as

$$ \delta(t):=\lim_{x\rightarrow0+} \frac{h(t)-h(t-x)}{x}, \quad t\in(0,1). $$

It follows from (2.3) that \(\rho(X)=\int_{0}^{1} \mathrm {VaR}_{t}(X) \mathrm{d} h(t)= \int_{0}^{1} \mathrm {VaR}_{t}(X)\delta(t)\mathrm{d}t\). Note that since \(\mathfrak{S}_{n}\) is compatible with a coherent risk measure \(\rho\), we have that \(\mathbb {E}[|X_{i}|]<\infty\), \(X_{i}\sim F_{i}\), \(i=1,\dots,n\). For \(q \in(1/2,1)\), define

$$ \tilde{\rho}_{q}(X)=\frac{1}{1-h(q)}\int_{q}^{1} \mathrm {VaR}_{t}(X)\delta (t)\mathrm{d} t,\quad X \in \mathcal {X}_{0}. $$

We can easily check that \(\tilde{\rho}_{q}\) is also a coherent distortion risk measure.

For any \(S\in\mathfrak{S}_{n}(F_{1},\dots,F_{n})\), write \(S=X_{1}+\cdots+X_{n}\), where \(X_{i}\sim F_{i}\), \(i=1,\dots,n\). For \(q\in(1/2,1)\), we have that

$$\begin{aligned} \left|\rho(S)-\int_{1-q}^{q} \mathrm {VaR}_{t}(S)\delta(t)\mathrm{d}t\right |&=\left|\int _{0}^{1-q} \mathrm {VaR}_{t}(S)\delta(t)\mathrm{d}t+\int_{q}^{1} \mathrm {VaR}_{t}(S)\delta (t)\mathrm{d}t\right |\\ &\leqslant\left|\int_{0}^{1-q} \mathrm {VaR}_{t}(S)\delta(t)\mathrm{d}t\right |+\left|\big(1-h(q)\big)\tilde{\rho}_{q}(S)\right|\\ &\leqslant\delta(1-q)\int_{0}^{1-q} |\mathrm {VaR}_{t}(S)|\mathrm{d}t+\left |\big(1-h(q)\big)\tilde{\rho}_{q}(S)\right|. \end{aligned}$$

Note that

$$\begin{aligned} \left|\big(1-h(q)\big)\tilde{\rho}_{q}(S)\right |&\leqslant \bigg|\big(1-h(q)\big)\sum_{i=1}^{n} \tilde{\rho}_{q}(X_{i}) \bigg|=\bigg|\sum _{i=1}^{n} \int_{q}^{1} \mathrm {VaR}_{t}(X_{i})\delta(t) \mathrm{d}t\bigg|. \end{aligned}$$

On the other hand, by the comonotonic additivity of \(\mathrm {VaR}_{t}\), \(t\in (0,1)\), we have that

$$\begin{aligned} \int_{0}^{1-q} |\mathrm {VaR}_{t}(S)|\mathrm{d}t&=\int_{0}^{1-q} |\mathrm {VaR}_{t}(S\mathrm {I}_{\{S\geqslant 0\}})+\mathrm {VaR}_{t}(S\mathrm {I}_{\{S< 0\}})|\mathrm{d}t\\ &\leqslant\int_{0}^{1-q} \mathrm {VaR}_{t}(S\mathrm {I}_{\{S\geqslant 0\}})\mathrm{d}t +\int _{0}^{1-q}\mathrm {VaR}_{1-t}(-S\mathrm {I}_{\{S< 0\}})\mathrm{d}t\\ &\leqslant\int_{0}^{1-q} \mathrm {VaR}_{t}(|S|)\mathrm{d}t +\int_{0}^{1-q}\mathrm {VaR}_{1-t}(|S|)\mathrm{d}t\\ &\leqslant2(1-q)\mathrm {ES}_{q}(|S|)\\ &\leqslant2 (1-q)\sum_{i=1}^{n} \mathrm {ES}_{q}(|X_{i}|)\\ &= 2\sum_{i=1}^{n} \int_{q}^{1} \mathrm {VaR}_{t}(|X_{i}|)\mathrm{d}t. \end{aligned}$$

Note that for \(i=1,\dots,n\), \(\rho(X_{i})<\infty\) implies that \(\int _{q}^{1} \mathrm {VaR}_{t}(X_{i})\delta(t) \mathrm{d}t\rightarrow0\) as \(q\rightarrow1\), and that \(\mathbb {E}[|X_{i}|]<\infty\) implies that \(\int_{q}^{1} \mathrm {VaR}_{t}(|X_{i}|)\mathrm{d} t\rightarrow0\) as \(q\rightarrow1\). As a consequence, as \(q\rightarrow1\),

$$ \eta(q):=\left|\rho(S)-\int_{1-q}^{q} \mathrm {VaR}_{t}(S)\delta(t)\mathrm {d}t\right |\longrightarrow0 $$

uniformly in \(S\in\mathfrak{S}_{n}\). Therefore, for each \(\varepsilon >0\), there exists \(1/2< q<1\) such that \(\eta(q)<\varepsilon /3\). By Theorem 1 of Cont et al. [10], the distortion risk measure

$$ \hat{\rho}_{q}(X):=\frac{1}{2q-1}\int_{1-q}^{q} \mathrm {VaR}_{t}(X)\delta (t)\mathrm{d} t,\quad X\in \mathcal {X}_{0} $$

is continuous at all distributions with respect to weak convergence. As a consequence, for fixed \(q\in(1/2,1)\) and \(S, S_{1}, S_{2},{\dots} \in \mathfrak{S}_{n}\) with \(S_{k}\to S\) weakly as \(k \to\infty\), we have that there exists \(K_{0}\in \mathbb {N}\) such that for \(k\geqslant K_{0}\), \(|\hat{\rho}_{q}(S_{k})-\hat{\rho}_{q}(S)|<\varepsilon /3\). Therefore, as \(k\to\infty\),

$$ |\rho(S_{k})-\rho(S)|\leqslant(2q-1)|\hat{\rho}_{q}(S_{k})-\hat{\rho}_{q}(S)|+2\eta (q)< \varepsilon . $$

Since \(\varepsilon \) is arbitrary, we conclude that \(\rho\) is aggregation-robust. □

1.3 A.3 Proof of Theorem 2.5

Proof

We first show that distortion risk measures with a continuous distortion function on \([0,1]\) are aggregation-robust. Since \(\mathcal {X}=L^{\infty}\), we suppose for some \(M>0\) that \(|X_{i}|\leqslant M\) a.s., \(X_{i}\sim F_{i}\), for all \(i=1,2,\dots\) For \(q\in(1/2,1)\), we have that

$$\begin{aligned} \eta(q):=&\,\left|\rho(S)-\int_{1-q}^{q} \mathrm {VaR}_{t}(S) \mathrm {d}h(t)\right|\\=&\,\left |\int_{0}^{1-q} \mathrm {VaR}_{t}(S) \mathrm{d}h(t)+\int_{q}^{1} \mathrm {VaR}_{t}(S) \mathrm{d}h(t)\right|\\ \leqslant&\, nMh(1-q)+nM\big(h(1)-h(q)\big)\longrightarrow0, \end{aligned}$$

uniformly in \(S\in\mathfrak{S}_{n}\). The rest of the proof is similar to the proof of Theorem 2.3.

Now suppose that \(h\) is discontinuous at \(p\in(0,1)\). Using the same argument as in Example 2.2, we can see that \(\rho\) is not aggregation-robust. The case where \(h\) is discontinuous at \(p=0\) or \(p=1\) can be obtained with similar counterexamples. □

1.4 A.4 Proof of Theorem 3.1

We use the following lemma, where an alternative definition of VaR is used, namely

$$ \mathrm {VaR}^{*}_{p}(X)=\inf\{x\in \mathbb {R}:\mathbb {P}[X\leqslant x]>p \}, \quad p\in(0,1). $$

The following lemma is analogous to Lemma 4.3 of [7], with the continuity condition on the marginal distributions removed. In the following, we set \(\mathfrak{S}_{n}=\mathfrak{S}_{n}(F_{1},\dots,F_{n})\).

Lemma A.4

For \(p\in(0,1)\),

$$\begin{aligned} \sup_{S\in\mathfrak{S}_{n}}\mathrm {VaR}^{*}_{p}(S) =&\sup\{\mathrm {ess}\ \mathrm {inf}\mbox{ }S: S\in \mathfrak{S}_{n}(F_{p,1},\dots,F_{p,n})\}, \end{aligned}$$
(A.1)
$$\begin{aligned} \inf_{S\in\mathfrak{S}_{n}}\mathrm {VaR}_{p}(S) =&\inf\{\mathrm {ess}\ \mathrm {sup}\mbox{ }S: S\in\mathfrak{S}_{n}(F_{1}^{p},\dots,F_{n}^{p})\}, \end{aligned}$$
(A.2)

where \(F_{p,i}\) is the distribution of \(F_{i}^{-1}(p+(1-p)U)\), and \(F_{i}^{p}\) is the distribution of \(F^{-1}_{i}(pU)\), \(i=1,\dots,n\), for a random variable \(U\) uniformly distributed on \([0,1]\).

Proof

We only need to show (A.1), as (A.2) is symmetric to (A.1). First, we show that

$$ \sup_{S\in\mathfrak{S}_{n}}\mathrm {VaR}^{*}_{p}(S)\leqslant\sup\{\mathrm {ess}\ \mathrm {inf}\mbox{ }S: S\in \mathfrak{S}_{n}(F_{p,1},\dots,F_{p,n})\}=:a_{0}. $$

For any \(T\in\mathfrak{S}_{n}\), denote its distribution by \(F_{T}\). Let \(U\sim\mathrm{U}[0,1]\) be such that \(T=F^{-1}_{T}(U)\), and define \(A_{0}=\{U\geqslant p\}\). Write \(T=X_{1}+\cdots+X_{n}\) where \(X_{i}\sim F_{i}\), \(i=1,\dots,n\). Clearly, the conditional random variable \(T|A_{0}=X_{1}|A_{0}+\cdots+X_{n}|A_{0}\) is dominated (in stochastic order) by some \(S_{0}\in\mathfrak{S}_{n}(F_{p,1},\dots,F_{p,n})\) since each \(X_{i}|A_{0}\) is dominated by some \(\hat{X}_{i}\sim F_{p,i}\). This implies that \(\mathrm {ess}\ \mathrm {sup}\mbox{ }T_{0}\leqslant a_{0}\), where \(T_{0}\) is distributed as \(T|A_{0}\). Therefore, \(\mathrm {VaR}_{p}^{*}(T)=\mathrm {ess}\ \mathrm {sup}\mbox{ }T_{0}\leqslant a_{0}\).

Next we show that

$$ \sup_{S\in\mathfrak{S}_{n}}\mathrm {VaR}^{*}_{p}(S)\geqslant a_{0}. $$

Note that by Lemma 4.2 of Bernard et al. [7], there exists \(S_{0}\in\mathfrak{S}_{n}(F_{p,1},\dots,F_{p,n})\) such that \(\mathrm {ess}\ \mathrm {inf}\mbox{ }S_{0}=a_{0}\). Let \(U_{0}\) be a \(\mathrm{U}[0,1]\) random variable, independent of \(S_{0}\). Write

$$ T_{1}=\sum_{i=1}^{n} F_{i}^{-1}(U_{0})\mathrm {I}_{\{U_{0}< p\}}+ S_{0}\mathrm {I}_{\{U_{0}\geqslant p\}}. $$

It is easy to check that \(T_{1}\in\mathfrak{S}_{n}\). As a consequence, \(\mathrm {VaR}_{p}^{*}(T_{1})\geqslant \mathrm {ess}\ \mathrm {sup}\mbox{ }S_{0}=a_{0}\). □

Proof of Theorem 3.1

We first show that for \(p \in(0,1)\) and \(q\in(p,1]\),

$$\begin{aligned} &\sup\{\mathrm {ess}\ \mathrm {inf}\mbox{ }S: S\in\mathfrak{S}_{n}(F_{p,1},\dots,F_{p,n})\} \\ &\geqslant \sum_{i=1}^{n} \mu_{p,q}^{(i)}-\max_{i=1,\dots,n}\big(F_{i}^{-1}(q)-F_{i}^{-1}(p)\big). \end{aligned}$$
(A.3)

Since the case when \(F_{i}^{-1}(q)=\infty\) for some \(i\) is trivial, we suppose that \(F_{i}^{-1}(q)<\infty\) for all \(i=1,\dots,n\).

Let \(F^{(i)}_{p,q}\) be the distribution of \(W_{i}=F_{i}^{-1}(p+(q-p)U)\) for \(0< p< q\leqslant1\). By Corollary A.3, there exist random variables \(X_{i}\sim F^{(i)}_{p,q}\), \(i=1,\dots,n\), such that

$$ X_{1}+ \cdots+X_{n} \geqslant \sum_{i=1}^{n} \mu_{p,q}^{(i)}-\max_{i=1,\dots ,n}\big(F^{-1}(q)-F^{-1}(p)\big). $$

Let \(Z_{i}\), \(i=1,\dots,n\), be any random variables with distribution \(F_{q,i}\), and let \(C\) be a set independent of \(X_{1},\dots ,X_{n},Z_{1},\dots ,Z_{n}\), for which \(\mathbb {P}[C]=(q-p)/(1-p)\). Define \(Y_{i}=X_{i}\mathrm {I}_{C}+Z_{i}(1-\mathrm {I}_{C})\) for \(i=1,\dots,n\). It is straightforward to check that \(Y_{i}\) has distribution \(F_{p,i}\) and

$$ Y_{1}+\cdots+Y_{n}\geqslant X_{1}+\cdots+X_{n} \geqslant \sum_{i=1}^{n} \mu _{p,q}^{(i)}-\max _{i=1,\dots,n}\big(F_{i}^{-1}(q)-F_{i}^{-1}(p)\big). $$

Thus

$$ \mathrm {ess}\ \mathrm {inf}\mbox{ }(Y_{1}+\cdots+Y_{n})\geqslant \sum_{i=1}^{n} \mu_{p,q}^{(i)}-\max _{i=1,\dots ,n}\big(F_{i}^{-1}(q)-F_{i}^{-1}(p)\big), $$

and we obtain (A.3). Since \(\mathrm {VaR}_{p}(X)\geqslant \mathrm {VaR}^{*}_{r}(X)\) for any \(r< p\) and any random variable \(X\), we have that

$$\begin{aligned} \overline {\mathrm {VaR}}_{p}(S_{n}) &\geqslant \lim_{r\rightarrow p-}\sup_{S\in\mathfrak{S}_{n}}\mathrm {VaR}^{*}_{r}(S)\\ &\geqslant \lim_{r\rightarrow p-}\bigg(\sum_{i=1}^{n} \mu_{r,q}^{(i)}-\max _{i=1,\dots,n}\big(F_{i}^{-1}(q)-F_{i}^{-1}(r)\big)\bigg)\\ &=\sum_{i=1}^{n} \mu_{p,q}^{(i)}-\max_{i=1,\dots,n}\big(F_{i}^{-1}(q)-F_{i}^{-1}(p)\big). \end{aligned}$$

Note that here we use the fact that \(F_{i}^{-1}\) is left-continuous for each \(i\). Now, we have (A.3), and with Lemma A.4, we obtain the first inequality in (3.5). On the other hand,

$$ \overline {\mathrm {VaR}}_{p}(S_{n})\leqslant\sup_{S\in\mathfrak{S}_{n}}\mathrm {VaR}^{*}_{p}(S)=\sup\{ \mathrm {ess}\ \mathrm {inf}\mbox{ }S: S\in\mathfrak{S}_{n}(F_{p,1},\ldots,F_{p,n})\}\leqslant\sum_{i=1}^{n}\mu _{p,1}^{(i)} $$

always holds. Thus we obtain (3.5). We can show (3.6) similarly. □

1.5 A.5 Proof of Theorem 3.3

Proof

First, let us assume that \(\mathbb {E}[X_{i}]=0\) for all \(i\in \mathbb {N}\). Note that

$$ \overline {\mathrm {ES}}_{p}(S_{n})=\sum_{i=1}^{n} \mathrm {ES}_{p}(X_{i})=\sum_{i=1}^{n}\mu^{(i)}_{p,1} $$

for \(X_{i}\sim F_{i}\). We use (3.5) and take \(q_{n}=1-n^{-1}\) for \(n\) large enough such that \(q_{n}>p\). By (3.10), we have \(\sum_{i=1}^{n}\mu^{(i)}_{p,1}>0\) for large \(n\).

Note that by (3.9), \(\mathbb {E}[|X_{i}|^{k}]\leqslant M\) uniformly. Therefore, \([F_{i}^{-1}(t)]^{k}(1-t)\leqslant M\) for \(t\in(0,1)\), and we have

$$ F^{-1}_{i}(t)\leqslant\left(\frac{M}{1-t}\right)^{1/k}, \quad t\in(0,1), i\in \mathbb {N}. $$

Note that for \(X_{i}\sim F_{i}\),

$$\begin{aligned} \mu^{(i)}_{p,1}-\mu^{(i)}_{p,q_{n}}&=\frac{1}{1-p}\mathbb {E}\big[X_{i}\mathrm {I}_{\{X_{i}\geqslant F_{i}^{-1}(p)\}}\big]-\frac{1}{q_{n}-p}\mathbb {E}\big[X_{i}\mathrm {I}_{\{ F_{i}^{-1}(q_{n})\geqslant X_{i}\geqslant F_{i}^{-1}(p)\}}\big] \\ &\leqslant\frac{1}{1-p}\mathbb {E}\big[X_{i}\mathrm {I}_{\{X_{i}\geqslant F^{-1}(q_{n})\}}\big] \\&=\frac{1}{1-p}\int_{q_{n}}^{1} F_{i}^{-1}(t) \mathrm{d}t \\&\leqslant\frac{1}{1-p}\int_{q_{n}}^{1} \left(\frac{M}{1-t}\right)^{1/k} \mathrm{d}t \\&=\frac{1}{1-p}\frac{1}{1-1/k} M^{1/k} (1-q_{n})^{1-1/k}. \end{aligned}$$

As a consequence, we have

$$\begin{aligned} \sup_{S\in\mathfrak{S}_{n}}\mathrm {VaR}_{p}(S)&\geqslant \sum_{i=1}^{n}\mu ^{(i)}_{p,q_{n}}- \max_{i=1,\dots ,n}(F^{-1}_{i}(q_{n})-F^{-1}_{i}(p)) \\ &\geqslant \sum_{i=1}^{n}\mu^{(i)}_{p,1}-\sum_{i=1}^{n}(\mu ^{(i)}_{p,1}-\mu^{(i)}_{p,q_{n}})-\max_{i=1,\dots,n }F^{-1}_{i}(q_{n}) \\ &\geqslant \sum_{i=1}^{n}\mu^{(i)}_{p,1}-\sum_{i=1}^{n}\frac {1}{1-p}\frac{1}{1-1/k} M^{1/k} (1-q_{n})^{1-1/k} \\ &\phantom{=}-\bigg(\frac{M}{1-q_{n}}\bigg)^{1/k} \\ &= \sum_{i=1}^{n}\mu^{(i)}_{p,1}- \frac{1}{1-p}\frac {1}{1-1/k} M^{1/k} n^{1/k}-M^{1/k}n^{1/k} \\ &=\sum_{i=1}^{n}\mu^{(i)}_{p,1}-O(n^{1/k}). \end{aligned}$$
(A.4)

By (3.10), it follows that

$$\begin{aligned} 1\geqslant \frac{\overline {\mathrm {VaR}}_{p}(S_{n})}{\sum_{i=1}^{n}\mu^{(i)}_{p,1}}\geqslant 1-\frac {O(n^{1/k})}{\sum_{i=1}^{n}\mu^{(i)}_{p,1}} \longrightarrow 1\quad \mbox{as }n\rightarrow\infty, \end{aligned}$$

hence we obtain (3.13).

Now for the case that \(\mathbb {E}[X_{i}]\ne0\) for some \(i\in \mathbb {N}\), we denote by \(F_{i}^{*}\) the distribution of \(X_{i}-\mathbb {E}[X_{i}]\) and set

$$ \mathfrak{S}_{n}^{*}=\{Y_{1}+\cdots+Y_{n}: Y_{i}\sim F_{i}^{*}, i=1,\dots,n\}. $$

Then by (A.4), with \(\mathfrak{S}_{n}\) replaced by \(\mathfrak{S}_{n}^{*}\), we have

$$\begin{aligned} \sup_{S\in\mathfrak{S}_{n} } \mathrm {VaR}_{p}(S)&=\sup_{S\in\mathfrak{S}^{*}_{n} } \mathrm {VaR}_{p}(S)+\sum_{i=1}^{n} \mathbb {E}[X_{i}]\\&=\sum_{i=1}^{n}(\mu^{(i)}_{p,1}-\mathbb {E}[X_{i}])-O(n^{1/k})+\sum_{i=1}^{n} \mathbb {E}[X_{i}]\\ &=\sum_{i=1}^{n}\mu ^{(i)}_{p,1}-O(n^{1/k}). \end{aligned}$$

Thus, (A.4) still holds for \(\mathfrak{S}_{n}\) in the case \(\mathbb {E}[X_{i}]\ne0\) for some \(i\).

When (3.11) holds, by (A.4), we have that

$$\begin{aligned} 1\geqslant \frac{\overline {\mathrm {VaR}}_{p}(S_{n})}{\sum_{i=1}^{n}\mu^{(i)}_{p,1}}\geqslant 1-\frac {(\frac {1}{1-p}\frac{k}{k-1}+1) M^{1/k}(n^{1/k})}{\sum_{i=1}^{n}\mu ^{(i)}_{p,1}}\geqslant 1-Cn^{-1+1/k}, \end{aligned}$$

for \(n\) sufficiently large. This leads to (3.14) and completes the proof of the theorem. □

1.6 A.6 Proof of Theorem 4.1

Proof

(i) Let us introduce \(a_{n}=\overline {\mathrm {VaR}}_{q}(S_{n})\), \(b_{n}=\underline {\mathrm {VaR}}_{q}(S_{n})\), \(c_{n}=\overline {\mathrm {ES}}_{q}(S_{n})\) and \(d_{n}=\underline {\mathrm {LES}}_{q}(S_{n})\). We have that

$$ \liminf_{n\rightarrow\infty}\frac{a_{n}-b_{n}}{c_{n}-d_{n}}=\liminf _{n\rightarrow\infty}\frac{a_{n}/c_{n}-b_{n}/c_{n}}{1-d_{n}/c_{n}}=\liminf _{n\rightarrow\infty}\frac{a_{n}/c_{n}-(b_{n}/d_{n})(d_{n}/c_{n})}{1-d_{n}/c_{n}}. $$

Note that by (4.1), we have \(\limsup_{n\rightarrow\infty }d_{n}/c_{n}<1\). Further, by Theorem 3.3 and Corollary 3.4, we have \(a_{n}/c_{n}\to1\) and \(b_{n}/d_{n}\to1\). As a consequence,

$$ \liminf_{n\rightarrow\infty}\frac{a_{n}-b_{n}}{c_{n}-d_{n}}\geqslant 1. $$

Since \(c_{n}\geqslant a_{n}\geqslant b_{n}\geqslant d_{n}\), we have that

$$ \frac{a_{n}-b_{n}}{c_{n}-d_{n}}\leqslant1\quad \Longrightarrow \quad \lim _{n\rightarrow\infty}\frac{a_{n}-b_{n}}{c_{n}-d_{n}}=1. $$

Write

$$ \frac{\overline {\mathrm {ES}}_{q}(S_{n})-\underline {\mathrm {LES}}_{q}(S_{n})}{\overline{\mathrm {ES}}_{p}(S_{n})-\underline {\mathrm {ES}}_{p}(S_{n})} =\frac {\overline{\mathrm {VaR}}_{q}(S_{n})-\underline{\mathrm {VaR}}_{q}(S_{n})}{\overline{\mathrm {ES}}_{p}(S_{n})-\underline {\mathrm {ES}}_{p}(S_{n})} \frac{a_{n}-b_{n}}{c_{n}-d_{n}}, $$

and we obtain the first equality in (4.2). The rest of (4.2) follows by noting that \(\mathrm {ES}_{q}(X)\geqslant \mathrm {ES}_{p}(X)\geqslant \mathbb {E}[X]\geqslant \mathrm {LES}_{q}(X)\) for any random variable \(X\) and any \(0< p\leqslant q<1\).

(ii) This can be obtained from part (i) by noting that (3.9), (3.15) and (4.1) are all satisfied by the distribution of \(X+c\), where \(c\) is some constant. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Embrechts, P., Wang, B. & Wang, R. Aggregation-robustness and model uncertainty of regulatory risk measures. Finance Stoch 19, 763–790 (2015). https://doi.org/10.1007/s00780-015-0273-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-015-0273-z

Keywords

Mathematics Subject Classification

JEL Classification

Navigation