Skip to main content
Log in

miR-183 and miR-21 expression as biomarkers of progression and survival in tongue carcinoma patients

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objectives

Micro RNAs (miRNAs) have a major role in human cancerogenesis.The current study investigated the prognostic significance of miR-183 and miR-21 expression in tongue carcinoma patients.

Material and method

For qPCR of miR-183 and miR-21 expression, total RNA isolated from 60 fresh-frozen tissue of tongue carcinomas was converted into cDNA by TaqMan MicroRNA Reverse Transcription Kit and quantified by TaqMan MicroRNAs Expression Assays. Fold changes in the miRNAs expression, normalized to RNU6B, were determined using 2−ΔΔCt method, and dichotomized into high and low according to cut-off values derived from ROC curve analysis.

Results

miR-183 emerged as promising discriminatory biomarker of poor outcome. Tissue over-expression of miR-183, observed in 68.3% of tongue carcinomas, was associated with clinical stage (p = 0.037), tumor size (p = 0.036), and high alcohol intake (p = 0.034).The patients with miR-183 over-expression had significantly shorter overall survival (p = 0.006) and a 5.666 times higher risk of poor outcome (p = 0.005), while miR-21 over-expression carried a tendency towards poorer survival (p = 0.073). However, multivariate analysis revealed that the recurrences were independent adverse prognostic factors, while miR-183 over-expression lost its significance.

Conclusion

Our results suggests that over-expression of miR-183 in tumor tissue could be a potential marker of clinical stage and a poor survival of tongue carcinoma patients and may be associated with high alcohol consumption.

Clinical relevance

Oncogenic miRNAs, such as the investigated miR-183 and miR-21, could be novel prognostic biomarkers of tumor progression and adverse clinical outcome in oral cancer, as well as novel therapeutic targets in cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shaw RJ, Pace-Balzan A (2000) Butterworth C (2011) contemporary clinical management of oral squamous cell carcinoma. Periodontol 57(1):89–101. doi:10.1111/j.1600-0757.2011.00392.x

    Article  Google Scholar 

  2. Marur S, Forastiere AA (2016) Head and neck squamous cell carcinoma: update on epidemiology, diagnosis, and treatment. Mayo Clin Proc 91(3):386–396. doi:10.1016/j.mayocp.2015.12.017

    Article  PubMed  Google Scholar 

  3. Gomez I, Warnakulasuriya S, Varela-Centelles PI, Lopez-Jornet P, Suarez-Cunqueiro M, Diz-Dios P, Seoane J (2010) Is early diagnosis of oral cancer a feasible objective? Who is to blame for diagnostic delay? Oral Dis 16(4):333–342. doi:10.1111/j.1601-0825.2009.01642.x

    Article  PubMed  Google Scholar 

  4. Shaw R (2006) The epigenetics of oral cancer. Int J Oral Maxillofac Surg 35(2):101–108. doi:10.1016/j.ijom.2005.06.014

    Article  PubMed  Google Scholar 

  5. Sethi N, Wright A, Wood H, Rabbitts P (2014) MicroRNAs and head and neck cancer: reviewing the first decade of research. Eur J Cancer 50(15):2619–2635. doi:10.1016/j.ejca.2014.07.012

    Article  PubMed  Google Scholar 

  6. Supic G, Kozomara R, Jovic N, Zeljic K, Magic Z (2011) Prognostic significance of tumor-related genes hypermethylation detected in cancer-free surgical margins of oral squamous cell carcinomas. Oral Oncologia 47(8):702–708. doi:10.1016/j.oraloncology.2011.05.014

    Article  Google Scholar 

  7. Kent OA, Mendell JT (2006) A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25(46):6188–6196. doi:10.1038/sj.onc.1209913

    Article  PubMed  Google Scholar 

  8. Gebeshuber CA, Zatloukal K, Martinez J (2009) miR-29a suppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis. EMBO Rep 10(4):400–405. doi:10.1038/embor.2009.9

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hurst DR, Edmonds MD, Welch DR (2009) Metastamir: the field of metastasis-regulatory microRNA is spreading. Cancer Res 69(19):7495–7498. doi:10.1158/0008-5472.can-09-2111

    Article  PubMed  PubMed Central  Google Scholar 

  10. Taylor MA, Sossey-Alaoui K, Thompson CL, Danielpour D, Schiemann WP (2013) TGF-beta upregulates miR-181a expression to promote breast cancer metastasis. J Clin Invest 123(1):150–163. doi:10.1172/jci64946

    Article  PubMed  Google Scholar 

  11. Chen H, Zhang L, Zhang L, Du J, Wang H, Wang B (2016) MicroRNA-183 correlates cancer prognosis, regulates cancer proliferation and bufalin sensitivity in epithelial ovarian caner. Am J Transl Res 8(4):1748–1755

    PubMed  PubMed Central  Google Scholar 

  12. Courthod G, Franco P, Palermo L, Pisconti S, Numico G (2014) The role of microRNA in head and neck cancer: current knowledge and perspectives. Molecules 19(5):5704–5716. doi:10.3390/molecules19055704

    Article  PubMed  Google Scholar 

  13. Hedback N, Jensen DH, Specht L, Fiehn AM, Therkildsen MH, Friis-Hansen L, Dabelsteen E, von Buchwald C (2014) MiR-21 expression in the tumor stroma of oral squamous cell carcinoma: an independent biomarker of disease free survival. PLoS One 9(4):e95193. doi:10.1371/journal.pone.0095193

    Article  PubMed  PubMed Central  Google Scholar 

  14. He Q, Chen Z, Cabay RJ, Zhang L, Luan X, Chen D, Yu T, Wang A, Zhou X (2016) microRNA-21 and microRNA-375 from oral cytology as biomarkers for oral tongue cancer detection. Oral Oncol 57:15–20. doi:10.1016/j.oraloncology.2016.03.017

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kawakita A, Yanamoto S, Yamada S, Naruse T, Takahashi H, Kawasaki G, Umeda M (2014) MicroRNA-21 promotes oral cancer invasion via the Wnt/beta-catenin pathway by targeting DKK2. Pathol Oncol Res 20(2):253–261. doi:10.1007/s12253-013-9689-y

    Article  PubMed  Google Scholar 

  16. Li J, Huang H, Sun L, Yang M, Pan C, Chen W, Wu D, Lin Z, Zeng C, Yao Y, Zhang P, Song E (2009) MiR-21 indicates poor prognosis in tongue squamous cell carcinomas as an apoptosis inhibitor. Clin Cancer Res 15(12):3998–4008. doi:10.1158/1078-0432.ccr-08-3053

    Article  PubMed  Google Scholar 

  17. Zhou XL, Wu JH, Wang XJ, Guo FJ (2015) Integrated microRNA-mRNA analysis revealing the potential roles of microRNAs in tongue squamous cell cancer. Mol Med Rep 12(1):885–894. doi:10.3892/mmr.2015.3467

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dambal S, Shah M, Mihelich B, Nonn L (2015) The microRNA-183 cluster: the family that plays together stays together. Nucleic Acids Res 43(15):7173–7188. doi:10.1093/nar/gkv703

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang QH, Sun HM, Zheng RZ, Li YC, Zhang Q, Cheng P, Tang ZH, Huang F (2013) Meta-analysis of microRNA-183 family expression in human cancer studies comparing cancer tissues with noncancerous tissues. Gene 527(1):26–32. doi:10.1016/j.gene.2013.06.006

    Article  PubMed  Google Scholar 

  20. Zhou T, Zhang GJ, Zhou H, Xiao HX, Li Y (2014) Overexpression of microRNA-183 in human colorectal cancer and its clinical significance. Eur J Gastroenterol Hepatol 26(2):229–233. doi:10.1097/meg.0000000000000002

    Article  PubMed  Google Scholar 

  21. Song C, Zhang L, Wang J, Huang Z, Li X, Wu M, Li S, Tang H, Xie X (2016) High expression of microRNA-183/182/96 cluster as a prognostic biomarker for breast cancer. Sci Rep 6:24502. doi:10.1038/srep24502

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ren W, Wang X, Gao L, Li S, Yan X, Zhang J, Huang C, Zhang Y, Zhi K (2014) MiR-21 modulates chemosensitivity of tongue squamous cell carcinoma cells to cisplatin by targeting PDCD4. Mol Cell Biochem 390(1–2):253–262. doi:10.1007/s11010-014-1976-8

    Article  PubMed  Google Scholar 

  23. Abraham D, Jackson N, Gundara JS, Zhao J, Gill AJ, Delbridge L, Robinson BG, Sidhu SB (2011) MicroRNA profiling of sporadic and hereditary medullary thyroid cancer identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets. Clin Cancer Res 17(14):4772–4781. doi:10.1158/1078-0432.ccr-11-0242

    Article  PubMed  Google Scholar 

  24. Brito BL, Lourenco SV, Damascena AS, Kowalski LP, Soares FA, Coutinho-Camillo CM (2016) Expression of stem cell-regulating miRNAs in oral cavity and oropharynx squamous cell carcinoma. J Oral Pathol Med. doi:10.1111/jop.12424

  25. Liu R, Liao J, Yang M, Shi Y, Peng Y, Wang Y, Pan E, Guo W, Pu Y, Yin L (2012) Circulating miR-155 expression in plasma: a potential biomarker for early diagnosis of esophageal cancer in humans. J Toxicol Environ Health A 75(18):1154–1162. doi:10.1080/15287394.2012.699856

    Article  PubMed  Google Scholar 

  26. Wei C, Song H, Sun X, Li D, Song J, Hua K, Fang L (2015) miR-183 regulates biological behavior in papillary thyroid carcinoma by targeting the programmed cell death 4. Oncol Rep 34(1):211–220. doi:10.3892/or.2015.3971

    Article  PubMed  Google Scholar 

  27. Wojtas B, Ferraz C, Stokowy T, Hauptmann S, Lange D, Dralle H, Musholt T, Jarzab B, Paschke R, Eszlinger M (2014) Differential miRNA expression defines migration and reduced apoptosis in follicular thyroid carcinomas. Mol Cell Endocrinol 388(1–2):1–9. doi:10.1016/j.mce.2014.02.011

    Article  PubMed  Google Scholar 

  28. Tang JF, Yu ZH, Liu T, Lin ZY, Wang YH, Yang LW, He HJ, Cao J, Huang HL, Liu G (2014) Five miRNAs as novel diagnostic biomarker candidates for primary nasopharyngeal carcinoma. Asian Pac J Cancer Prev 15(18):7575–7581

    Article  PubMed  Google Scholar 

  29. Fan D, Wang Y, Qi P, Chen Y, Xu P, Yang X, Jin X, Tian X (2016) MicroRNA-183 functions as the tumor suppressor via inhibiting cellular invasion and metastasis by targeting MMP-9 in cervical cancer. Gynecol Oncol 141(1):166–174. doi:10.1016/j.ygyno.2016.02.006

    Article  PubMed  Google Scholar 

  30. Kundu ST, Byers LA, Peng DH, Roybal JD, Diao L, Wang J, Tong P, Creighton CJ, Gibbons DL (2016) The miR-200 family and the miR-183~96~182 cluster target Foxf2 to inhibit invasion and metastasis in lung cancers. Oncogene 35(2):173–186. doi:10.1038/onc.2015.71

    Article  PubMed  Google Scholar 

  31. Xie L, Yang Z, Li G, Shen L, Xiang X, Liu X, Xu D, Xu L, Chen Y, Tian Z, Chen X (2013) Genome-wide identification of bone metastasis-related microRNAs in lung adenocarcinoma by high-throughput sequencing. PLoS One 8(4):e61212. doi:10.1371/journal.pone.0061212

    Article  PubMed  PubMed Central  Google Scholar 

  32. Patel SG, Shah JP (2005) TNM staging of cancers of the head and neck: striving for uniformity among diversity. CA cancer J Clin 55(4):242–258 quiz 261-242, 264

    Article  PubMed  Google Scholar 

  33. Budczies J, Klauschen F, Sinn BV, Gyorffy B, Schmitt WD, Darb-Esfahani S, Denkert C (2012) Cutoff finder: a comprehensive and straightforward web application enabling rapid biomarker cutoff optimization. PLoS One 7(12):e51862. doi:10.1371/journal.pone.0051862

    Article  PubMed  PubMed Central  Google Scholar 

  34. Manikandan M, Deva Magendhra Rao AK, Arunkumar G, Manickavasagam M, Rajkumar KS, Rajaraman R, Munirajan AK (2016) Oral squamous cell carcinoma: microRNA expression profiling and integrative analyses for elucidation of tumourigenesis mechanism. Mol Cancer 15:28. doi:10.1186/s12943-016-0512-8

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yuan D, Li K, Zhu K, Yan R, Dang C (2015) Plasma miR-183 predicts recurrence and prognosis in patients with colorectal cancer. Cancer Biol Ther 16(2):268–275. doi:10.1080/15384047.2014.1002327

    Article  PubMed  PubMed Central  Google Scholar 

  36. Leung WK, He M, Chan AW, Law PT, Wong N (2015) Wnt/beta-catenin activates MiR-183/96/182 expression in hepatocellular carcinoma that promotes cell invasion. Cancer Lett 362(1):97–105. doi:10.1016/j.canlet.2015.03.023

    Article  PubMed  Google Scholar 

  37. Ye Z, Zhang Z, Wu L, Liu C, Chen Q, Liu J, Wang X, Zhuang Z, Li W, Xu S, Hang C (2016) Upregulation of miR-183 expression and its clinical significance in human brain glioma. Neurol Sci 37(8):1341–1347. doi:10.1007/s10072-016-2599-5

    Article  PubMed  Google Scholar 

  38. Gundara JS, Zhao JT, Gill AJ, Clifton-Bligh R, Robinson BG, Delbridge L, Sidhu SB (2014) Nodal metastasis microRNA expression correlates with the primary tumour in MTC. ANZ J Surg 84(4):235–239. doi:10.1111/j.1445-2197.2012.06291.x

    Article  PubMed  Google Scholar 

  39. Yang M, Liu R, Li X, Liao J, Pu Y, Pan E, Yin L, Wang Y (2014) miRNA-183 suppresses apoptosis and promotes proliferation in esophageal cancer by targeting PDCD4. Mol cells 37(12):873–880. doi:10.14348/molcells.2014.0147

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ren LH, Chen WX, Li S, He XY, Zhang ZM, Li M, Cao RS, Hao B, Zhang HJ, Qiu HQ, Shi RH (2014) MicroRNA-183 promotes proliferation and invasion in oesophageal squamous cell carcinoma by targeting programmed cell death 4. Br J Cancer 111(10):2003–2013. doi:10.1038/bjc.2014.485

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pritchard CC, Kroh E, Wood B, Arroyo JD, Dougherty KJ, Miyaji MM, Tait JF, Tewari M (2012) Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila) 5(3):492–497. doi:10.1158/1940-6207.capr-11-0370

    Article  Google Scholar 

  42. Avissar M, McClean MD, Kelsey KT, Marsit CJ (2009) MicroRNA expression in head and neck cancer associates with alcohol consumption and survival. Carcinogenesis 30(12):2059–2063. doi:10.1093/carcin/bgp277

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hu A, Huang JJ, Xu WH, Jin XJ, Li JP, Tang YJ, Huang XF, Cui HJ, Sun GB (2014) miR-21 and miR-375 microRNAs as candidate diagnostic biomarkers in squamous cell carcinoma of the larynx: association with patient survival. Am J Transl Res 6(5):604–613

    PubMed  PubMed Central  Google Scholar 

  44. Stanitz E, Juhasz K, Gombos K, Gocze K, Toth C, Kiss I (2015) Alteration of miRNA expression correlates with lifestyle, social and environmental determinants in esophageal carcinoma. Anticancer Res 35(2):1091–1097

    PubMed  Google Scholar 

  45. Brito JA, Gomes CC, Guimaraes AL, Campos K, Gomez RS (2014) Relationship between microRNA expression levels and histopathological features of dysplasia in oral leukoplakia. J Oral Pathol Med 43(3):211–216. doi:10.1111/jop.12112

    Article  PubMed  Google Scholar 

  46. Cervigne NK, Reis PP, Machado J, Sadikovic B, Bradley G, Galloni NN, Pintilie M, Jurisica I, Perez-Ordonez B, Gilbert R, Gullane P, Irish J, Kamel-Reid S (2009) Identification of a microRNA signature associated with progression of leukoplakia to oral carcinoma. Hum Mol Genet 18(24):4818–4829. doi:10.1093/hmg/ddp446

    Article  PubMed  Google Scholar 

  47. Supic G, Kozomara R, Brankovic-Magic M, Jovic N, Magic Z (2009) Gene hypermethylation in tumor tissue of advanced oral squamous cell carcinoma patients. Oral Oncol 45(12):1051–1057. doi:10.1016/j.oraloncology.2009.07.007

    Article  PubMed  Google Scholar 

  48. Kudo Y, Kitajima S, Ogawa I, Hiraoka M, Sargolzaei S, Keikhaee MR, Sato S, Miyauchi M, Takata T (2004) Invasion and metastasis of oral cancer cells require methylation of E-cadherin and/or degradation of membranous beta-catenin. Clin Cancer Res 10(16):5455–5463. doi:10.1158/1078-0432.ccr-04-0372

    Article  PubMed  Google Scholar 

  49. Wang Z, Murakami R, Yuki K, Yoshida Y, Noda M (2016) Bioinformatic studies to predict MicroRNAs with the potential of uncoupling RECK expression from epithelial-mesenchymal transition in cancer cells. Cancer Inform 15:91–102. doi:10.4137/cin.s34141

    PubMed  PubMed Central  Google Scholar 

  50. Li CY, Liang GY, Yao WZ, Sui J, Shen X, Zhang YQ, Peng H, Hong WW, Ye YC, Zhang ZY, Zhang WH, Yin LH, Pu YP (2016) Identification and functional characterization of microRNAs reveal a potential role in gastric cancer progression. Clin Transl Oncol. doi:10.1007/s12094-016-1516-y

  51. Lu YY, Zheng JY, Liu J, Huang CL, Zhang W, Zeng Y (2015) miR-183 induces cell proliferation, migration, and invasion by regulating PDCD4 expression in the SW1990 pancreatic cancer cell line. Biomed Pharmacother 70:151–157. doi:10.1016/j.biopha.2015.01.016

    Article  PubMed  Google Scholar 

  52. Sun SS, Zhou X, Huang YY, Kong LP, Mei M, Guo WY, Zhao MH, Ren Y, Shen Q, Zhang L (2015) Targeting STAT3/miR-21 axis inhibits epithelial-mesenchymal transition via regulating CDK5 in head and neck squamous cell carcinoma. Mol Cancer 14:213. doi:10.1186/s12943-015-0487-x

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordana Supic.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

The work was supported by the Faculty of Medicine, Military Medical Academy, University of Defense, Belgrade, Serbia, grant MFVMA/12/16–18, and the Ministry of Education, Science and Technological Development, Republic of Serbia, grant no. 173008.

Ethical approval

All procedures performed in studies involving human tissue samples were in accordance with the ethical standards of the institutional committee, the Ethics Committee of the Military Medical Academy, Belgrade, Serbia, and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Supic, G., Zeljic, K., Rankov, A.D. et al. miR-183 and miR-21 expression as biomarkers of progression and survival in tongue carcinoma patients. Clin Oral Invest 22, 401–409 (2018). https://doi.org/10.1007/s00784-017-2126-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-017-2126-y

Keywords

Navigation