Skip to main content

Advertisement

Log in

Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs

  • Original Article
  • Published:
Clinical Oral Investigations Aims and scope Submit manuscript

Abstract

Objective

To evaluate the performance of a new artificial intelligence (AI)-driven tool for tooth detection and segmentation on panoramic radiographs.

Materials and methods

In total, 153 radiographs were collected. A dentomaxillofacial radiologist labeled and segmented each tooth, serving as the ground truth. Class-agnostic crops with one tooth resulted in 3576 training teeth. The AI-driven tool combined two deep convolutional neural networks with expert refinement. Accuracy of the system to detect and segment teeth was the primary outcome, time analysis secondary. The Kruskal-Wallis test was used to evaluate differences of performance metrics among teeth groups and different devices and chi-square test to verify associations among the amount of corrections, presence of false positive and false negative, and crown and root parts of teeth with potential AI misinterpretations.

Results

The system achieved a sensitivity of 98.9% and a precision of 99.6% for tooth detection. For segmenting teeth, lower canines presented best results with the following values for intersection over union, precision, recall, F1-score, and Hausdorff distances: 95.3%, 96.9%, 98.3%, 97.5%, and 7.9, respectively. Although still above 90%, segmentation results for both upper and lower molars were somewhat lower. The method showed a clinically significant reduction of 67% of the time consumed for the manual.

Conclusions

The AI tool yielded a highly accurate and fast performance for detecting and segmenting teeth, faster than the ground truth alone.

Clinical significance

An innovative clinical AI-driven tool showed a faster and more accurate performance to detect and segment teeth on panoramic radiographs compared with manual segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sklavos A, Beteramia D, Delpachitra SN, Kumar R (2019) The panoramic dental radiograph for emergency physicians. Emerg Med J 36(9):565–571. https://doi.org/10.1136/emermed-2018-208332

    Article  Google Scholar 

  2. Yeung AWK, Mozos I (2020) The innovative and sustainable use of dental panoramic radiographs for the detection of osteoporosis. Int J Environ Res Public Health 17(7). https://doi.org/10.3390/ijerph17072449

  3. Jacobs R, Quirynen M (2014) Dental cone beam computed tomography: justification for use in planning oral implant placement. Periodontol 2000 66(1):203–213. https://doi.org/10.1111/prd.12051

    Article  PubMed  Google Scholar 

  4. Lin PL, Huang PY, Huang PW, Hsu HC, Chen CC (2014) Teeth segmentation of dental periapical radiographs based on local singularity analysis. Comput Methods Prog Biomed 113(2):433–445. https://doi.org/10.1016/j.cmpb.2013.10.015

    Article  Google Scholar 

  5. Vinayahalingam S, Xi T, Bergé S, Maal T, de Jong G (2019) Automated detection of third molars and mandibular nerve by deep learning. Sci Rep 9(1):9007. https://doi.org/10.1038/s41598-019-45487-3

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vranckx M, Ockerman A, Coucke W, Claerhout E, Grommen B, Miclotte A, van Vlierberghe M, Politis C, Jacobs R (2019) Radiographic prediction of mandibular third molar eruption and mandibular canal involvement based on angulation. Orthod Craniofacial Res 22(2):118–123. https://doi.org/10.1111/ocr.12297

    Article  Google Scholar 

  7. Hiraiwa T, Ariji Y, Fukuda M, Kise Y, Nakata K, Katsumata A, Fujita H, Ariji E (2019) A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dentomaxillofacial Radiol 48(3):20180218. https://doi.org/10.1259/dmfr.20180218

    Article  Google Scholar 

  8. Ariji Y, Yanashita Y, Kutsuna S, Muramatsu C, Fukuda M, Kise Y, Nozawa M, Kuwada C, Fujita H, Katsumata A, Ariji E (2019) Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. Oral Surg Oral Med Oral Pathol Oral Radiol 128(4):424–430. https://doi.org/10.1016/j.oooo.2019.05.014

    Article  PubMed  Google Scholar 

  9. Fukuda M, Inamoto K, Shibata N, Ariji Y, Yanashita Y, Kutsuna S, Nakata K, Katsumata A, Fujita H, Ariji E (2019) Evaluation of an artificial intelligence system for detecting vertical root fracture on panoramic radiography. Oral Radiol 2019:1617–1620. https://doi.org/10.1007/s11282-019-00409-x

    Article  Google Scholar 

  10. Kise Y, Ikeda H, Fujii T, Fukuda M, Ariji Y, Fujita H, Katsumata A, Ariji E (2019) Preliminary study on the application of deep learning system to diagnosis of Sjögren’s syndrome on CT images. Dentomaxillofacial Radiol 48(6):20190019. https://doi.org/10.1259/dmfr.20190019

    Article  Google Scholar 

  11. Murata M, Ariji Y, Ohashi Y, Kawai T, Fukuda M, Funakoshi T, Kise Y, Nozawa M, Katsumata A, Fujita H, Ariji E (2019) Deep-learning classification using convolutional neural network for evaluation of maxillary sinusitis on panoramic radiography. Oral Radiol 35(3):301–307. https://doi.org/10.1007/s11282-018-0363-7

    Article  PubMed  Google Scholar 

  12. Kats L, Vered M, Zlotogorski-Hurvitz A, Harpaz I (2019) Atherosclerotic carotid plaque on panoramic radiographs: neural network detection. Int J Comput Dent 22(2):163–169

    PubMed  Google Scholar 

  13. Moutselos K, Berdouses E, Oulis C, Maglogiannis I (2019) Recognizing occlusal caries in dental intraoral images using deep learning. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS 2019, pp 1617–1620. https://doi.org/10.1109/EMBC.2019.8856553

    Chapter  Google Scholar 

  14. Lee JH, Kim DH, Jeong SN, Choi SH (2018) Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J Periodontal Implant Sci 48(2):114. https://doi.org/10.5051/jpis.2018.48.2.114

    Article  PubMed  PubMed Central  Google Scholar 

  15. Leite AF, de Faria Vasconcelos K, Willems H, Jacobs R (2020) Radiomics and machine learning in oral healthcare. Proteomics Clin Appl 14(3):e1900040. https://doi.org/10.1002/prca.201900040

    Article  PubMed  Google Scholar 

  16. Barboza EB, Marana AN, Oliveira DT (2012) Semiautomatic dental recognition using a graph-based segmentation algorithm and teeth shapes features. In: Proceedings - 2012 5th IAPR International Conference on Biometrics, ICB 2012. https://doi.org/10.1109/ICB.2012.6199831.

  17. Baksi BG, Alpöz E, Soǧur E, Mert A (2010) Perception of anatomical structures in digitally filtered and conventional panoramic radiographs: A clinical evaluation. Dentomaxillofacial Radiol 39(7):424–430. https://doi.org/10.1259/dmfr/30570374

    Article  Google Scholar 

  18. Hasan MM, Ismail W, Hassan R, Yoshitaka A (2016) Automatic segmentation of jaw from panoramic dental X-ray images using GVF snakes. In: World Automation Congress Proceedings, vol 1, pp 1–6. https://doi.org/10.1109/WAC.2016.7583022

    Chapter  Google Scholar 

  19. Banar N, Bertels J, Laurent F, Boedi RM, de Tobel J, Thevissen P, Vandermeulen D (2020) Towards fully automated third molar development staging in panoramic radiographs. Int J Legal Med 134(5):1831–1841. https://doi.org/10.1007/s00414-020-02283-3

    Article  PubMed  Google Scholar 

  20. Galibourg A, Dumoncel J, Telmon N, Calvet A, Michetti J, Maret D (2018) Assessment of automatic segmentation of teeth using a watershed-based method. Dentomaxillofacial Radiol 47(1):20170220. https://doi.org/10.1259/dmfr.20170220

    Article  Google Scholar 

  21. Lee JH, Han SS, Kim YH, Lee C, Kim I (2020) Application of a fully deep convolutional neural network to the automation of tooth segmentation on panoramic radiographs. Oral Surg Oral Med Oral Pathol Oral Radiol 129(6):635–642. https://doi.org/10.1016/j.oooo.2019.11.007

    Article  PubMed  Google Scholar 

  22. Tuzoff DV, Tuzova LN, Bornstein MM, Krasnov AS, Kharchenko MA, Nikolenko SI, Sveshnikov MM, Bednenko GB (2019) Tooth detection and numbering in panoramic radiographs using convolutional neural networks. Dentomaxillofacial Radiol 48(4):20180051. https://doi.org/10.1259/dmfr.20180051

    Article  Google Scholar 

  23. Silva G, Oliveira L, Pithon M (2018) Automatic segmenting teeth in X-ray images: trends, a novel data set, benchmarking and future perspectives. Expert Syst Appl 107:15–31. https://doi.org/10.1016/j.eswa.2018.04.001

    Article  Google Scholar 

  24. Wirtz A, Mirashi SG, Wesarg S (2018) Automatic teeth segmentation in panoramic X-ray images using a coupled shape model in combination with a neural network. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), vol 16-20, pp 712–179. https://doi.org/10.1007/978-3-030-00937-3_81

    Chapter  Google Scholar 

  25. Jader G, Fontineli J, Ruiz M et al (2019) Deep instance segmentation of teeth in panoramic X-ray images. In: Proceedings - 31st Conference on Graphics, Patterns and Images, SIBGRAPI 2018. https://doi.org/10.1109/SIBGRAPI.2018.00058

    Chapter  Google Scholar 

  26. Chen L-C, Zhu Y, Papandreou G, et al (2018) Rethinking atrous convolution for semantic image segmentation arXiv Prepr arXiv170605587. https://doi.org/10.1159/000018039

  27. Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2015. https://doi.org/10.1109/CVPR.2015.7298965

    Chapter  Google Scholar 

  28. Wada K labelme: Image polygonal annotation with Python. https://github.com/wkentaro/labelme. Accessed 1 Nov 2019

  29. Shaheen E, Khalil W, Ezeldeen M, van de Casteele E, Sun Y, Politis C, Jacobs R (2017) Accuracy of segmentation of tooth structures using 3 different CBCT machines. Oral Surg Oral Med Oral Pathol Oral Radiol 23(1):123–128. https://doi.org/10.1016/j.oooo.2016.09.005

    Article  Google Scholar 

  30. Schwendicke F, Golla T, Dreher M, Krois J (2019) Convolutional neural networks for dental image diagnostics: a scoping review. J Dent 91:103226. https://doi.org/10.1016/j.jdent.2019.103226

    Article  PubMed  Google Scholar 

  31. Yu HJ, Cho SR, Kim MJ, Kim WH, Kim JW, Choi J (2020) Automated skeletal classification with lateral cephalometry based on artificial intelligence. J Dent Res 99(3):249–256. https://doi.org/10.1177/0022034520901715

    Article  PubMed  Google Scholar 

  32. Ilhan B, Lin K, Guneri P, Wilder-Smith P (2020) Improving oral cancer outcomes with imaging and artificial intelligence. J Dent Res 99(3):241–248. https://doi.org/10.1177/0022034520902128

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors gratefully acknowledge financial support from Fundação de Apoio à Pesquisa do Distrito Federal– FAP-DF (protocol #23106.013588/2019-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Ferreira Leite.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leite, A.F., Gerven, A.V., Willems, H. et al. Artificial intelligence-driven novel tool for tooth detection and segmentation on panoramic radiographs. Clin Oral Invest 25, 2257–2267 (2021). https://doi.org/10.1007/s00784-020-03544-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00784-020-03544-6

Keywords

Navigation