Skip to main content
Log in

Reduced cortical surface area in adolescents with conduct disorder

  • Original Contribution
  • Published:
European Child & Adolescent Psychiatry Aims and scope Submit manuscript

Abstract

Children with conduct disorder (CD) are at increased risk of developing antisocial personality disorder and psychopathy in adulthood. Neuroimaging research has identified abnormal cortical volume (CV) in CD. However, CV comprises two genetically and developmentally separable components: cortical thickness (CT) and surface area (SA). Aim of this study is to explore the relationship between the cortical constituents of CV in boys with CD. We applied FreeSurfer software to structural MRI data to derive measures of CV, CT, and SA in 21 boys with CD and 19 controls. Relationships between these cortical measures were investigated. Boys with CD had significantly reduced CV and SA compared to non-CD boys in ventromedial and dorsolateral prefrontal cortex. We found no significant between-group differences in CT. Reduced prefrontal CV in boys with CD is associated with significantly reduced SA in the same regions. This finding may help to identify specific neurodevelopmental mechanisms underlying cortical deficits observed in CD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. American PA (2000) Diagnostic and statistical manual of mental disorders fourth edition—text revision

  2. Baala L, Briault S, Etchevers HC, Laumonnier F, Natiq A, Amiel J, Boddaert N, Picard C, Sbiti A, Asermouh A, Attie-Bitach T, Encha-Razavi F, Munnich A, Sefiani A, Lyonnet S (2007) Homozygous silencing of T-box transcription factor EOMES leads to microcephaly with polymicrogyria and corpus callosum agenesis. Nat Genet 39:454–456

    Article  CAS  PubMed  Google Scholar 

  3. Bedogni F, Hodge RD, Nelson BR, Frederick EA, Shiba N, Daza RA, Hevner RF (2010) Autism susceptibility candidate 2 (Auts2) encodes a nuclear protein expressed in developing brain regions implicated in autism neuropathology. Gene Expr Patterns 10:9–15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Blair RJ (2013) The neurobiology of psychopathic traits in youths. Nat Rev Neurosci 14:786–799

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Blair RJ, Cipolotti L (2000) Impaired social response reversal. A case of ‘acquired sociopathy’. Brain 123:1122–1141

    Article  PubMed  Google Scholar 

  6. Blair RJ, Colledge E, Mitchell DG (2001) Somatic markers and response reversal: is there orbitofrontal cortex dysfunction in boys with psychopathic tendencies? J Abnorm Child Psychol 29:499–511

    Article  CAS  PubMed  Google Scholar 

  7. Buckner RL, Head D, Parker J, Fotenos AF, Marcus D, Morris JC, Snyder AZ (2004) A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. Neuroimage 23:724–738

    Article  PubMed  Google Scholar 

  8. Craig MC, Catani M, Deeley Q, Latham R, Daly E, Kanaan R, Picchioni R, McGuire PK, Fahy T, Murphy DG (2009) Altered connections on the road to psychopathy. Molecular Psychiatry 14:946–953

    Article  CAS  PubMed  Google Scholar 

  9. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9:179–194

    Article  CAS  PubMed  Google Scholar 

  10. De Brito SA, Mechelli A, Wilke M, Laurens KR, Jones AP, Barker GJ, Hodgins GJ, Viding E (2009) Size matters: increased grey matter in boys with conduct problems and callous-unemotional traits. Brain 132:843–852

    Article  PubMed  Google Scholar 

  11. Ecker C, Ginestet C, Feng Y, Johnston P, Lombardo MV, Lai M-C, Suckling J, Palaniyappan L, Daly E, Murphy CM, Baron-Cohen S, Brammer M, Murphy DGM (2013) Brain surface anatomy in adults with autism: the relationship between surface area, cortical thickness, and autistic symptoms. JAMA Psychiatry 70:59–70

    Article  PubMed  Google Scholar 

  12. Fahim C, He Y, Yoon U, Chen J, Evans AC, Perusse D (2011) Neuroanatomy of childhood disruptive behavior disorders. Aggressive Behavior 37:1–12

    Article  Google Scholar 

  13. Fairchild G, Hagan CC, Walsh ND, Passamonti L, Calder AJ, Goodyer IM (2013) Brain structural abnormalities in adolescent girls with conduct disorder. J Child Psychol Psychiatry 54(1):86–95

    Article  PubMed Central  PubMed  Google Scholar 

  14. Fairchild G, Passamonti L, Hurford G, Hagan CC, von dem Hagen EAH, van Goozen SHM, Goodyer IM, Calder AJ (2011) Brain structure abnormalities in early-onset and adolescent-onset conduct disorder. Am J Psychiatry 168:624–633

    Article  PubMed  Google Scholar 

  15. Finger EC, Marsh AA, Mitchell DG, Reid ME, Sims C, Budhani S, Kosson DS, Chen G, Towbin KE, Leibenluft E, Pine DS, Blair JR (2008) Abnormal ventromedial prefrontal cortex function in children with psychopathic traits during reversal learning. Arch Gen Psychiatry 65:586–594

    Article  PubMed Central  PubMed  Google Scholar 

  16. Fischl B, Dale AM (2000) Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97:11050–11055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Fischl B, Salat DH, van der Kouwe AJ, Makris N, Segonne F, Quinn BT, Dale AM (2004) Sequence-independent segmentation of magnetic resonance images. Neuroimage 23(Suppl 1):S69–S84

    Article  PubMed  Google Scholar 

  18. Fischl B, Sereno MI, Dale AM (1999) Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9:195–207

    Article  CAS  PubMed  Google Scholar 

  19. Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH, Busa E, Seidman LJ, Goldstein J, Kennedy D, Caviness V, Makris N, Rosen B, Dale AM (2004) Automatically parcellating the human cerebral cortex. Cereb Cortex 14:11–22

    Article  PubMed  Google Scholar 

  20. Forth AE, Kosson D, Hare RD (2003) Hare psychopathy checklist: youth version (PCL:YV). Multi-Health Systems Inc., Toronto

    Google Scholar 

  21. Frick PJ, Hare RD (2001) The antisocial process screening version (ASPD). Multi-Health Systems Inc., Toronto, Canada

    Google Scholar 

  22. Gelhorn HL, Sakai JT, Price RK, Crowley TJ (2007) DSM-IV conduct disorder criteria as predictors of antisocial personality disorder. Compr Psychiatry 48:529–538

    Article  PubMed Central  PubMed  Google Scholar 

  23. Glaser T, Jepeal L, Edwards JG, Young SR, Favor J, Maas RL (1994) PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat Genet 7:463–471

    Article  CAS  PubMed  Google Scholar 

  24. Goodman R (1999) The extended version of the strengths and difficulties questionnaire as a guide to child psychiatric cases and consequent burden. J Child Psychol Psychiatry 40:779–799

    Article  Google Scholar 

  25. Goodman R, Simonoff E, Stevenson J (1995) The impact of child IQ, parent IQ and sibling IQ on child behavioural deviance scores. J Child Psychol Psychiatry 36:409–425

    Article  CAS  PubMed  Google Scholar 

  26. Grafman J, Schwab K, Warden D, Pridgen A, Brown HR, Salazar AM (1996) Frontal lobe injuries, violence, and aggression: a report of the Vietnam Head Injury Study. Neurology 46:1231–1238

    Article  CAS  PubMed  Google Scholar 

  27. Gregory S, Ffytche D, Simmons A, Kumari V, Howard M, Hodgins S, Blackwood N (2012) The antisocial brain: psychopathy matters. Arch Gen Psychiatry 69:962–972

    Article  PubMed  Google Scholar 

  28. Huebner T, Vloet TD, Marx I, Konrad K, Fink GR, Herpertz SC, Herpertz-Dahlmann B (2008) Morphometric brain abnormalities in boys with conduct disorder. J Am Acad Child Adolesc Psychiatry 47:540–547

    Article  PubMed  Google Scholar 

  29. Hyatt CJ, Haney-Caron E, Stevens MC (2012) Cortical thickness and folding deficits in conduct-disordered adolescents. Biol Psychiatry 72:207–214

    Article  PubMed Central  PubMed  Google Scholar 

  30. Jones AP, Laurens KR, Herba CM, Barker GJ, Viding E (2009) Amygdala hypoactivity to fearful faces in boys with conduct problems and callous-unemotional traits. Am J Psychiatry 166:95–102

    Article  PubMed  Google Scholar 

  31. Jovicich J, Czanner S, Greve D, Haley E, van der Kouwe A, Gollub R, Kennedy D, Schmitt F, Brown G, Macfall J, Fischl B, Dale A (2006) Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage 30:436–443

    Article  PubMed  Google Scholar 

  32. Joyner AH, CR J, Bloss CS, Bakken TE, Rimol LM, Melle I, Agartz I, Djurovic S, Topol EJ, Schork NJ, Andreassen OA, Dale AM (2009) A common MECP2 haplotype associates with reduced cortical surface area in humans in two independent populations. Proc Natl Acad Sci 106(36):15483–15488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Kaufman J, Birhamer B, Brent D, Rao U, Flynn C, Moreci P, Williamson D, Ryan ND (1997) Schedule for affective disorders and schizophrenia for school-age children—present and lifetime version (K-SADS-PL): initial reliability and validity data. J Am Acad Child Adolesc Psychiatry 36:980–988

    Article  CAS  PubMed  Google Scholar 

  34. Kessler RC, Nelson CB, McGonagle KA, Edlund MJ, Frank RG, Leaf PJ (1996) The epidemiology of co-occurring addictive and mental disorders: implications for prevention and service utilisation. Am J Orthopsychiatry 66:17–31

    Article  CAS  PubMed  Google Scholar 

  35. Kruesi MJ, Casanova MF, Mannheim G, Johnson-Bilder A (2004) Reduced temporal lobe volume in early onset conduct disorder. Psychiatry Res 132:1–11

    Article  PubMed  Google Scholar 

  36. Lenroot RK, Gogtay N, Greenstein DK, Wells EM, Wallace GL, Clasen LS, Blumenthal JD, Lerch J, Zijdenbos AP, Evans AC, Thompson PM, Giedd JN (2007) Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage 36:1065–1073

    Article  PubMed Central  PubMed  Google Scholar 

  37. Loat CS, Curran S, Lewis CM, Duvall J, Geschwind D, Bolton P, Craig IW (2008) Methyl-CpG-binding protein 2 polymorphisms and vulnerability to autism. Genes Brain Behavior 7:754–760

    Article  CAS  Google Scholar 

  38. Noctor SC, Martinez-Cerdeno V, Ivic L, Kriegstein AR (2004) Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci 7:136–144

    Article  CAS  PubMed  Google Scholar 

  39. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113

    Article  CAS  PubMed  Google Scholar 

  40. Olsson M (2009) DSM diagnosis of conduct disorder (CD)—a review. Nordic J Psychiatry 63(2):102–112

    Article  Google Scholar 

  41. Panizzon MS, Fennema-Notestine C, Eyler LT, Jernigan TL, Prom-Wormley E, Neal M, Jacobson K, Lyons MJ, Grant MD, Franz CE, Xian H, Tsuang M, Fischl B, Seidman L, Dale A, Kremen WS (2009) Distinct genetic influences on cortical surface area and cortical thickness. Cereb Cortex 19:2728–2735

    Article  PubMed Central  PubMed  Google Scholar 

  42. Passamonti L, Fairchild G, Fornito A, Goodyer IM, Nimmo-Smith I, Hagan CC, Calder AJ (2012) Abnormal anatomical connectivity between the amygdala and orbitofrontal cortex in conduct disorder. PLoS One 7(11):e48789

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Pontious A, Kowalczyk T, Englund C, Hevner RF (2008) Role of intermediate progenitor cells in cerebral cortex development. Dev Neurosci 30:24–32

    Article  CAS  PubMed  Google Scholar 

  44. Quinn JC, Molinek M, Martynoga BS, Zaki PA, Faedo A, Bulfone A, Hevner RF, West JD, Price DJ (2007) Pax6 controls cerebral cortical cell number by regulating exit from the cell cycle and specifies cortical cell identity by a cell autonomous mechanism. Dev Biol 302:50–65

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Raine A, Moffitt TE, Caspi A, Loeber R, Stouthamer-Loeber M, Lynam D (2005) Neurocognitive impairments in boys on the life-course persistent antisocial path. J Abnorm Psychol 114:38–49

    Article  PubMed  Google Scholar 

  46. Rakic P (2002) Evolving concepts of cortical radial and areal specification. Prog Brain Res 136:265–280

    Article  PubMed  Google Scholar 

  47. Rakic P (1988) Specification of cerebral cortical areas. Science 241:170–176

    Article  CAS  PubMed  Google Scholar 

  48. Raznahan A, Shaw P, Lalonde F, Stockman M, Wallace GL, Greenstein D, Clasen L, Gogtay N, Giedd JN (2011) How does your cortex grow? J Neurosci 31:7174–7177

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Rimol LM, Agartz I, Djurovic S, Brown AA, Roddey JC, Kahler AK, Mattingsdal M, Athanasiu L, Joyner AH, Schork NJ, Halgren E, Sundet K, Melle I, Dale AM, Andreassen OA (2010) Sex-dependent association of common variants of microcephaly genes with brain structure. Proc Natl Acad Sci USA 107:384–388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Rubia K (2011) “Cool” Inferior Frontostriatal Dysfunction in Attention-Deficit/Hyperactivity Disorder Versus “Hot” Ventromedial Orbitofrontal-Limbic Dysfunction in Conduct Disorder: a review. Biol Psychiatry 69:e69–e87

    Article  PubMed  Google Scholar 

  51. Sarkar S, Craig MC, Catani M, Dell’acqua F, Fahy T, Deeley Q, Murphy DG (2013) Frontotemporal white-matter microstructural abnormalities in adolescents with conduct disorder: a diffusion tensor imaging study. Psychol Med 43:401–411

    Article  CAS  PubMed  Google Scholar 

  52. Scott S, Knapp M, Henderson J, Maughan B (2001) Financial cost of social exclusion: follow up study of antisocial children into adulthood. Br Med J 323:191–194

    Article  CAS  Google Scholar 

  53. Segonne F, Dale AM, Busa E, Glessner M, Salat D, Hahn HK, Fischl B (2004) A hybrid approach to the skull stripping problem in MRI. Neuroimage 22:1060–1075

    Article  CAS  PubMed  Google Scholar 

  54. Shaw P, Malek M, Watson B, Sharp W, Evans A, Greenstein D (2012) Development of cortical surface area and gyrification in attention-deficit/hyperactivity disorder. Biol Psychiatry 72:191–197

    Article  PubMed  Google Scholar 

  55. Sterzer P, Stadler C, Poustka F, Kleinschmidt A (2007) A structural neural deficit in adolescents with conduct disorder and its association with lack of empathy. Neuroimage 37:335–342

    Article  PubMed  Google Scholar 

  56. Sultana R, Yu CE, Yu J, Munson J, Chen D, Hua W, Estes A, Cortes F, de la Barra F, Yu D, Haider ST, Trask BJ, Green ED, Raskind WH, Disteche CM, Wijsman E, Dawson G, Storm DR, Schellenberg GD, Villacres EC (2002) Identification of a novel gene on chromosome 7q11.2 interrupted by a translocation breakpoint in a pair of autistic twins. Genomics 80:129–134

    Article  CAS  PubMed  Google Scholar 

  57. Toro R, Perron M, Pike B, Richer L, Veillette S, Pausova Z, Paus T (2008) Brain size and folding of the human cerebral cortex. Cereb Cortex 18:2352–2357

    Article  PubMed  Google Scholar 

  58. Vloet TD, Konrad K, Huebner T, Herpertz S, Herpertz-Dahlmann B (2008) Structural and functional MRI- findings in children and adolescents with antisocial behavior. Behav Sci Law 26:99–111

    Article  PubMed  Google Scholar 

  59. Wallace GL, White SF, Robustelli B, Sinclair S, Hwang S, Martin A, Blair RJR (2014) Cortical and subcortical abnormalities in youths with conduct disorder and elevated callous-unemotional traits. J Am Acad Child Adolesc Psychiatry 53(4):456–465

    Article  PubMed Central  PubMed  Google Scholar 

  60. Wechsler D (1999) Wechsler abbreviated scale of intelligence. Psychological Corporation, San Antonio

    Google Scholar 

  61. Young L, Bechara A, Tranel D, Damasio H, Hauser M, Damasio AR (2010) Damage to ventromedial prefrontal cortex impairs judgment of harmful intent. Neuron 65:845–851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Zhou CJ, Borello U, Rubenstein JL, Pleasure SJ (2006) Neuronal production and precursor proliferation defects in the neocortex of mice with loss of function in the canonical Wnt signaling pathway. Neuroscience 142:1119–1131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was generously funded by a private donation; together with infrastructure support from the Mortimer D and Theresa Sackler Foundation, the Medical Research Council (MRC, UK) AIMS Network (G0400061/69344, DGMM, principle investigator), an ongoing MRC funded study of brain myelination in neurodevelopmental disorders (G0800298/87573), and the NIHR Biomedical Research Centre for Mental Health at King’s College London, Institute of Psychiatry and South London and Maudsley NHS Foundation Trust.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethical standards

This study was approved by the Joint South London and Maudsley Research Ethics Committee (243/00) and was therefore conducted in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagari Sarkar.

Additional information

The last two authors contributed equally to the production of this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material. Figure 2: Results of uncorrected exploratory analysis into between group differences in cortical anatomy. Figure 2: Spatially distributed differences in (A) cortical thickness; (B) surface area; and (C) cortical volume between boys with CD and healthy controls (p<0.05, uncorrected). Relative deficits in CD are displayed in cyan/blue, while relative excesses are shown in red/yellow. Surfaces are presented in lateral, medial and frontal view for the left and right pial (outer) surfaces. Figure 3: Results of further analysis show no between group differences in local gyrification index (lGI) at the cluster level.Figure 4: Exploratory analysis showing excluding IQ as a covariate. Figure 4: shows that cluster level between group differences in cortical surface area remain unchanged by removal of IQ as a covariate.

Supplementary material 1 (JPEG 88 kb)

Supplementary material 2 (JPEG 77 kb)

Supplementary material 3 (JPEG 78 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, S., Daly, E., Feng, Y. et al. Reduced cortical surface area in adolescents with conduct disorder. Eur Child Adolesc Psychiatry 24, 909–917 (2015). https://doi.org/10.1007/s00787-014-0639-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00787-014-0639-3

Keywords

Navigation