Skip to main content
Log in

Computational and qualitative aspects of evolution of curves driven by curvature and external force

  • Regular article
  • Published:
Computing and Visualization in Science

Abstract

We propose a direct method for solving the evolution of plane curves satisfying the geometric equation v=β(x,k,ν) where v is the normal velocity, k and ν are the curvature and tangential angle of a plane curve Γ⊂R2 at a point x∈Γ. We derive and analyze the governing system of partial differential equations for the curvature, tangential angle, local length and position vector of an evolving family of plane curves. The governing equations include a nontrivial tangential velocity functional yielding uniform redistribution of grid points along the evolving family of curves preventing thus numerically computed solutions from forming various instabilities. We also propose a full space-time discretization of the governing system of equations and study its experimental order of convergence. Several computational examples of evolution of plane curves driven by curvature and external force as well as the geodesic curvatures driven evolution of curves on various complex surfaces are presented in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abresch, U., Langer, J.: The normalized curve shortening flow and homothetic solutions. J. Diff. Geom. 23, 175–196 (1986)

    MathSciNet  Google Scholar 

  2. Angenent, S.B.: Parabolic equations for curves on surfaces I: Curves with p–integrable curvature. Annals of Mathematics 132, 451–483 (1990)

    Article  MathSciNet  Google Scholar 

  3. Angenent, S.B.: Nonlinear analytic semiflows. Proc. R. Soc. Edinb., Sect. A 115, 91–107, (1990)

    Article  MathSciNet  Google Scholar 

  4. Angenent, S.B., Gurtin, M.E.: Multiphase thermomechanics with an interfacial structure 2. Evolution of an isothermal interface. Arch. Rat. Mech. Anal. 108, 323–391 (1989)

    Article  MathSciNet  Google Scholar 

  5. Angenent, S.B., Gurtin, M.E.: General contact angle conditions with and without kinetics. Quarterly of Appl. Math. 54(3), 557–569 (1996)

    MathSciNet  Google Scholar 

  6. Beneš, M.: Mathematical and computational aspects of solidification of pure crystallic materials. Acta Math. Univ. Comenianae 70, 123–151 (2001)

    Google Scholar 

  7. Caginalp, G.: The dynamics of a conserved phase field system: Stefan–like, Hele–Shaw, and Cahn–Hilliard models as asymptotic limits. IMA J. Appl. Math. 44, 77–94 (1990)

    Article  MathSciNet  Google Scholar 

  8. Caselles, V., Catté, F., Coll, T, Dibos, F.: A geometric model for active contours in image processing. Numerische Matematik 66, 1–31 (1993)

    Article  MathSciNet  Google Scholar 

  9. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. International Journal of Computer Vision 22, 61–79 (1997)

    Article  Google Scholar 

  10. Caselles, V., Kimmel, R., Sapiro, G., Sbert, C.: Minimal surfaces: a geometric three dimensional segmentation approach. Numerische Matematik 77, 423–451 (1997)

    Article  MathSciNet  Google Scholar 

  11. Deckelnick, K.: Weak solutions of the curve shortening flow Calc. Var. Partial Differ. Equ. 5, 489–510 (1997)

    Article  MathSciNet  Google Scholar 

  12. Dziuk, G.: Convergence of a semi discrete scheme for the curve shortening flow. Math. Models Methods Appl. Sci. 4, 589–606 (1994)

    Article  MathSciNet  Google Scholar 

  13. Dziuk, G.: Discrete anisotropic curve shortening flow. SIAM J. Numer. Anal. 36, 1808–1830 (1999)

    Article  MathSciNet  Google Scholar 

  14. Gage, M., Hamilton, R.S.: The heat equation shrinking convex plane curves. J. Diff. Geom. 23, 69–96 (1986)

    MathSciNet  Google Scholar 

  15. Grayson, M.: The heat equation shrinks embedded plane curves to round points. J. Diff. Geom. 26, 285–314 (1987)

    MathSciNet  Google Scholar 

  16. Hou, T.Y., Lowengrub, J., Shelley, M.: Removing the stiffness from interfacial flows and surface tension. J. Comput. Phys. 114, 312–338 (1994)

    Article  MathSciNet  Google Scholar 

  17. Hou, T.Y., Klapper, I., Si, H.: Removing the stiffness of curvature in computing 3-d filaments. J. Comput. Phys. 143, 628–664 (1998)

    Article  MathSciNet  Google Scholar 

  18. Kačur, J., Mikula, K.: Solution of nonlinear diffusion appearing in image smoothing and edge detection. Applied Numerical Mathematics 17, 47–59 (1995)

    Article  MathSciNet  Google Scholar 

  19. Kass, M., Witkin, A., Terzopulos, D.: Snakes: active contour models. International Journal of Computer Vision 1, 321–331 (1987)

    Article  Google Scholar 

  20. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Gradient flows and geometric active contours models, in Proceedings International Conference on Computer Vision’95, Boston, 1995

  21. Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Conformal curvature flows: from phase transitions to active vision. Arch. Rational Mech. Anal. 134, 275–301 (1996)

    Article  MathSciNet  Google Scholar 

  22. Kimura, M.: Numerical analysis for moving boundary problems using the boundary tracking method. Japan J. Indust. Appl. Math. 14, 373–398 (1997)

    Article  MathSciNet  Google Scholar 

  23. Malladi, R., Sethian, J., Vemuri, B.: Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Machine Intelligence 17, 158–174 (1995)

    Article  Google Scholar 

  24. Mikula, K., Kačur, J.: Evolution of convex plane curves describing anisotropic motions of phase interfaces. SIAM J. Sci. Comput. 17, 1302–1327 (1996)

    Article  MathSciNet  Google Scholar 

  25. Mikula, K. Solution of nonlinear curvature driven evolution of plane convex curves. Appl. Numer. Math. 21, 1–14 (1997)

    Google Scholar 

  26. Mikula, K., Ševčovič, D.: Solution of nonlinearly curvature driven evolution of plane curves. Appl. Numer. Math. 31, 191–207 (1999)

    Article  MathSciNet  Google Scholar 

  27. Mikula, K., Ševčovič, D. Evolution of plane curves driven by a nonlinear function of curvature and anisotropy. SIAM J. Appl. Math. 61, 1473–1501 (2001)

    Google Scholar 

  28. Mikula, K., Ševčovič, D.: A direct method for solving an anisotropic mean curvature flow of plane curves with an external force. submitted

  29. Mikula, K., Ševčovič, D.: Evolution of curves on a surface driven by the geodesic curvature and external force. submitted

  30. Nochetto, R., Paolini, M., Verdi, C.: Sharp error analysis for curvature dependent evolving fronts. Math. Models Methods Appl. Sci. 3, 711–723 (1993)

    Article  MathSciNet  Google Scholar 

  31. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. Proc. IEEE Computer Society Workshop on Computer Vision 1987

  32. Sapiro, G., Tannenbaum, A.: On affine plane curve evolution. J. Funct. Anal. 119, 79–120 (1994)

    Article  MathSciNet  Google Scholar 

  33. Sarti, A., Mikula, K., Sgallari, F.: Nonlinear multiscale analysis of three-dimensional echocardiographic sequences. IEEE Trans. on Medical Imaging 18, 453–466 (1999)

    Article  Google Scholar 

  34. Schmidt, A.: Computation of three dimensional dendrites with finite elements. J. Comput. Phys. 125, 293–312 (1996)

    Article  Google Scholar 

  35. Sethian, J.A.: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Material Science. New York: Cambridge University Press 1999

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol Mikula.

Additional information

Communicated by

J. Kačur

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikula, K., Ševčovič , D. Computational and qualitative aspects of evolution of curves driven by curvature and external force. Comput. Visual Sci. 6, 211–225 (2004). https://doi.org/10.1007/s00791-004-0131-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00791-004-0131-6

Keywords

Navigation