Skip to main content
Log in

Degradation of phenol and toxicity of phenolic compounds: a comparison of cold-tolerant Arthrobacter sp. and mesophilic Pseudomonas putida

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Phenol degradation efficiency of cold-tolerant Arthrobacter sp. AG31 and mesophilic Pseudomonas putida DSM6414 was compared. The cold-tolerant strain was cultivated at 10°C, while the mesophile was grown at 25°C. Both strains degraded 200 mg and 400 mg phenol/l within 48–72 h of cultivation, but the cold-tolerant strain produced more biomass than the mesophile. Both strains oxidized catechol by the ortho type of ring fission. Catechol 1,2 dioxygenase (C1,2D) activity was found intra- and extracellularly in the absence and in the presence of phenol. In the presence of 200 mg phenol/l, C1,2D activity of the mesophile was about 1.5- to 2-fold higher than that of the cold-tolerant strain. However, an initial phenol concentration of 400 mg/l resulted in a comparable enzyme activity of the cold-tolerant and the mesophilic strain. The two strains differed significantly in their toxicity pattern towards 12 aromatic (mostly phenolic) compounds at different growth temperatures, which was determined via growth inhibition in the presence of nutrients and toxicants. For the cold-tolerant strain, toxicity was significantly lower at 10°C than at 25°C. The mesophile showed a significantly lower susceptibility to high hydrocarbon concentrations when grown at 25°C compared to 10°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allsop PJ, Christy Y, Moo-Young M, Sullivan GR (1992) Dynamics of phenol degradation by Pseudomonas putida. Biotechnol Bioeng 41:572–580

    Google Scholar 

  • Bastos AER, Moon DH, Rossi A, Trevors J, Tsai SM (2000a) Salt-tolerant, phenol-degrading microorganisms isolated from Amazonian soil samples. Arch Microbiol 174:346–352

    Article  CAS  PubMed  Google Scholar 

  • Bastos AER, Tornisielo VL, Nozawa SR, Trevors JT, Rossi A (2000b) Phenol metabolism by two microorganisms isolated from Amazonian forest soil samples. J Ind Microbiol Biotechnol 24:403–409

    Google Scholar 

  • Birger A, Krauß G, Kiesel B, Dermietzel J, Gläßer W (1997) Abbaupotential für aliphatische und aromatische Kohlenwasserstoffe in bakteriellen und heterotrophen Communities differenter Grundwasser-Biozönosen. In: Kreysa G, Wiesner J (eds) Möglichkeiten und Grenzen der Reinigung kontaminierter Gewässer. Dechema, Frankfurt a M, pp 571–581

  • Feitkenhauer H, Schnicke S, Müller R, Märkl H (2001) Determination of the kinetic parameters of the phenol-degrading thermophile Bacillus thermoleovorans sp. A2. Appl Microbiol Biotechnol 57:744–750

    Article  CAS  PubMed  Google Scholar 

  • Fritsche W (1998) Umwelt-Mikrobiologie. Gustav Fischer, Jena

  • Gibson DT, Gschwendt B, Keh W, Kobal VM (1973) Initial reactions in the oxidation of ethylbenzene by Pseudomonas putida. Biochemistry 12:1520–1528

    CAS  PubMed  Google Scholar 

  • Gurujeyalakshmi G, Oriel P (1989) Isdoation of phenol-metabolizing enzymes in Trichosporon cutaneum. Arch Microbiol 130:54–58

    Google Scholar 

  • Hamzah RY, Al-Baharna BS (1994) Catechol ring cleavage in Pseudomonas cepacia: the simultaneous induction of ortho and meta pathways. Appl Microbiol Biotechnol 41:250–256

    Article  CAS  Google Scholar 

  • Hinteregger C, Streichsbier F (1997) Halomonas sp., a moderately halophilic strain, for biotreatment of saline phenolic waste water. Biotechnol Lett 19:1099–1102

    Google Scholar 

  • Hinteregger C, Leitner R, Loidl M, Ferschl A, Streichsbier F (1992) Degradation of phenol and phenolic compounds by Pseudomonas putida EFII. Appl Microbiol Biotechnol 37:252–259

    CAS  PubMed  Google Scholar 

  • Keddie RM, Collins MD, Jones D (1986) Genus Arthrobacter. In: Sneath PH, Mair NS, Sharpe NE, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Wiliams and Wilkins, Baltimore, pp 1288–1301

  • Kotturi G, Robinson CW, Inniss WE (1991) Phenol degradation by a psychrotrophic strain of Pseudomonas putida. Appl Microbiol Biotechnol 34:539–543

    CAS  Google Scholar 

  • Lengeler JW, Drews G, Schlegel HG (eds) (1999) Biology of the prokaryotes. Thieme, Stuttgart

  • Li JK, Humphrey AE (1989) Kinetic and fluorimetric behaviour of a phenol fermentation. Biotechnol Lett 11:177–182

    CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Schinner F (2003) Phenol degradation by cold-tolerant bacteria and yeasts. In: Proceedings of the Second European Bioremediation Conference. Chania, Greece, pp 200–203

  • Margesin R, Feller G, Gerday C, Russell NJ (2002) Cold-adapted microorganisms: adaptation strategies and biotechnological potential. In: Bitton G (ed) The encyclopedia of environmental microbiology, vol 2. Wiley, New York, pp 871–885

  • Margesin R, Gander S, Zacke G, Gounot AM, Schinner F (2003) Hydrocarbon degradation by cold-tolerant bacteria and yeasts. Extremophiles 7:451–458

    Article  CAS  PubMed  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    CAS  PubMed  Google Scholar 

  • Müller RH, Babel W (1994) Phenol and its derivatives as heterotrophic substrates for microbial growth—an energetic comparison. Appl Microbiol Biotechnol 42:446–451

    Google Scholar 

  • Mutzel A, Reinscheid UM, Antranikian G, Müller R (1996) Isolation and characterization of a thermophilic Bacillus strain that degrades phenol and cresols as sole carbon source at 70°C. Appl Microbiol Biotechnol 46:593–596

    Article  CAS  Google Scholar 

  • Nakazawa T, Nakazawa A (1970) Pyrocatechase (Pseudomonas). In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 17A. Academic, New York, pp 518–522

  • Nakazawa T, Yokota T (1973) Benzoate metabolism in Pseudomonas putida (arvilla) mt-2: demonstration of two benzaote pathways. J Bacteriol 115:262–267

    CAS  PubMed  Google Scholar 

  • Natarajan MR, Lu Z, Oriel P (1994) Cloning and expression of a pathway for benzene and toluene from Bacillus stearothermophilus. Biodegradation 5:77–82

    CAS  PubMed  Google Scholar 

  • Nozaki M (1970) Metapyrocatechase (Pseudomonas). In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol 17A. Academic, New York, pp 522–525

  • Ren S, Frymier PD (2003) Toxicity estimation of phenolic compounds by bioluminescent bacterium. J Environ Eng-ASCE 129:328–335

    Google Scholar 

  • Santos VL, Linardi VR (2001) Phenol degradation by yeasts isolated from industrial effluents. J Gen Appl Microbiol 47:213–221

    CAS  PubMed  Google Scholar 

  • Verharr HJM, Van Leeuwen CJ, Hermens JLM (1992) Classifying environmental pollutants. 1: Structure-activity relationship for prediciton of aquatic toxicity. Chemosphere 25:471–491

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Margesin.

Additional information

Communicated by K. Horikoshi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margesin, R., Bergauer, P. & Gander, S. Degradation of phenol and toxicity of phenolic compounds: a comparison of cold-tolerant Arthrobacter sp. and mesophilic Pseudomonas putida . Extremophiles 8, 201–207 (2004). https://doi.org/10.1007/s00792-004-0378-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-004-0378-3

Keywords

Navigation