Skip to main content

Advertisement

Log in

Comparison of the microbial communities of hot springs waters and the microbial biofilms in the acidic geothermal area of Copahue (Neuquén, Argentina)

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Copahue is a natural geothermal field (Neuquén province, Argentina) dominated by the Copahue volcano. As a consequence of the sustained volcanic activity, Copahue presents many acidic pools, hot springs and solfataras with different temperature and pH conditions that influence their microbial diversity. The occurrence of microbial biofilms was observed on the surrounding rocks and the borders of the ponds, where water movements and thermal activity are less intense. Microbial biofilms are particular ecological niches within geothermal environments; they present different geochemical conditions from that found in the water of the ponds and hot springs which is reflected in different microbial community structure. The aim of this study is to compare microbial community diversity in the water of ponds and hot springs and in microbial biofilms in the Copahue geothermal field, with particular emphasis on Cyanobacteria and other photosynthetic species that have not been detected before in Copahue. In this study, we report the presence of Cyanobacteria, Chloroflexi and chloroplasts of eukaryotes in the microbial biofilms not detected in the water of the ponds. On the other hand, acidophilic bacteria, the predominant species in the water of moderate temperature ponds, are almost absent in the microbial biofilms in spite of having in some cases similar temperature conditions. Species affiliated with Sulfolobales in the Archaea domain are the predominant microorganism in high temperature ponds and were also detected in the microbial biofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abed RM, Dobretsov S, Sudesh K (2009) Applications of Cyanobacteria in biotechnology. J Appl Microbiol 106:1–12

    Article  CAS  PubMed  Google Scholar 

  • Achenbach L, Woese C (1999) 16S and 23S rRNA-like primers. In: Sower KR, Schreier HJ (eds) Archaea: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, pp 521–523

    Google Scholar 

  • Al-Bader D, Eliyas M, Rayan R, Radwan S (2013) Air–dust-borne associations of phototrophic and hydrocarbon-utilizing microorganisms: promising consortia in volatile hydrocarbon bioremediation. Environ Sci Pollut Res 19:3997–4005

    Article  Google Scholar 

  • Amann RI (1995) In: van Elsas JD, de Bruijn FJ (eds) situ identification of microorganisms by whole cell hybridization with rRNA-targeted nucleic acid probes, In: Akkermans ADL. Molecular microbial ecology manual. Kluwer Academic Publishers, Dordrecht, pp 1–15

    Google Scholar 

  • Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA (1990) Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 56:1919–1925

    PubMed Central  CAS  PubMed  Google Scholar 

  • Amaral-Zettler LA, Zettler ER, Theroux SM, Palacios C, Aguilera A, Amils R (2011) Microbial community structure across the tree of life in the extreme Rio Tinto. ISME J 5:42–50

    Article  PubMed Central  PubMed  Google Scholar 

  • Amarouche-Yala S, Benouadah A, Bentabet AEO, López-García P (2014) Morphological and phylogenetic diversity of thermophilic Cyanobacteria in Algerian hot springs. Extremophiles. doi:10.1007/s00792-014-0680-7

    PubMed  Google Scholar 

  • Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ (2006) New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 72:5734–5741

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bond PL, Banfield JF (2001) Design and performance of rRNA targeted oligonucleotide probes for in situ detection and phylogenetic identification of microorganisms inhabiting acid mine drainage environments. Microb Ecol 41:149–161

    CAS  PubMed  Google Scholar 

  • Bond PL, Smriga SP, Banfield JF (2000) Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66:3842–3849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boomer SM, Lodge DP, Dutton BE, Pierson B (2002) Molecular characterization of novel red green nonsulfur bacteria from five distinct hot spring communities in Yellowstone National Park. Appl Environ Microbiol 68:346–355

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Boomer SM, Noll KL, Geesey GG, Dutton BE (2009) Formation of multilayered photosynthetic biofilms in an alkaline thermal spring in Yellowstone National Park, Wyoming. Appl Environ Microbiol 75:2464–2475

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brock TD (1973) Lower pH limit for the existence of blue-green algae: evolutionary and ecological implications. Science 179:480–483

    Article  CAS  PubMed  Google Scholar 

  • Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Archiv für Mikrobiologie 84:54–68

    Article  CAS  PubMed  Google Scholar 

  • Burgess AE, Unrine JM, Mills GL, Romanek CS, Wiegel J (2012) Comparative geochemical and microbiological characterization of two thermal ponds in the Uzon Caldera, Kamchatka, Russia. Microb Ecol 63:471–489

    Article  PubMed  Google Scholar 

  • Castenholz RW (1996) Endemism and biodiversity of thermophilic Cyanobacteria. Nova Hedwig 112:33–47

    Google Scholar 

  • Castenholz RW (2001) Phylum BX. Cyanobacteria: oxygenic photosynthetic bacteria. In: Garrity GM, Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 473–600

    Chapter  Google Scholar 

  • Chiacchiarini P, Lavalle L, Giaveno A, Donati E (2010) First assessment of acidophilic microorganisms from geothermal Copahue–Caviahue system. Hydrometallurgy 104:334–341

    Article  CAS  Google Scholar 

  • Choi H, Engene N, Smith JE, Preskitt LB, Gerwick WH (2010) Crossbyanols A-D, toxic brominated polyphenyl ethers from the Hawaiian bloom-forming cyanobacterium Leptolyngbya crossbyana. J Nat Prod 73:517–522

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen Y, Gurevitz M (1992) The Cyanobacteria: ecology, physiology and molecular genetics. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The Prokaryotes, 2nd edn. Springer, New York, pp 2079–2104

    Google Scholar 

  • Coman C, Drugă B, Hegedus A, Sicora C, Dragoş N (2013) Archaeal and bacterial diversity in two hot spring microbial mats from a geothermal region in Romania. Extremophiles 17:523–534

    Article  PubMed  Google Scholar 

  • Daims H, Bruhl A, Amann R, Schleifer KH, Wagner M (1999) The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst Appl Microbiol 22:434–444

    Article  CAS  PubMed  Google Scholar 

  • Engel AS, Johnson LR, Porter ML (2013) Arsenite oxidase gene diversity among Chloroflexi and Proteobacteria from El Tatio Geyser Field, Chile. FEMS Microbiol Ecol 83:745–756

    Article  CAS  PubMed  Google Scholar 

  • Ferris MJ, Muyzer G, Ward DM (1996) Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62:340–346

    PubMed Central  CAS  PubMed  Google Scholar 

  • García-Moyano A, González-Toril E, Aguilera A, Amils R (2007) Prokaryotic community composition and ecology of floating macroscopic filaments from an extreme acidic environment, Rio Tinto (SW, Spain). Syst Appl Microbiol 30:601–614

    Article  PubMed  Google Scholar 

  • Giaveno MA, Urbieta MS, Ulloa R, González-Toril E, Donati ER (2013) Physiologic versatility and growth flexibility as the main characteristics of a novel thermoacidophilic Acidianus strain isolated from Copahue geothermal area in Argentina. Microb Ecol 65:336–346

    Article  CAS  PubMed  Google Scholar 

  • Golyshina OV, Timmis KN (2005) Ferroplasma and relatives, recently discovered cell wall-lacking archaea making a living in extremely acid, heavy metal-rich environments. Environ Microbiol 7:1277–1288

    Article  CAS  PubMed  Google Scholar 

  • González-Toril E, Llobet-Brossa E, Casamayor EO, Amann R, Amils R (2003) Microbial ecology of an extreme acidic environment, the Tinto River. Appl Environ Microbiol 69:4853–4865

    Article  PubMed Central  PubMed  Google Scholar 

  • González-Toril E, Aguilera A, Souza-Egipsy V, Pamo EL, España JS, Amils R (2011) Geomicrobiology of La Zarza-Perrunal acid mine effluent (Iberian Pyritic Belt, Spain). Appl Env Microbiol 77:2685–2694

    Article  Google Scholar 

  • Hallberg KB, Coupland K, Kimura S, Johnson DB (2005) Macroscopic streamer growths in acidic, metal rich mine waters in North Wales consist of novel and remarkably simple bacterial communities. Appl Environ Microbiol 72:2022–2030

    Article  Google Scholar 

  • Hamamura N, Macur RE, Korf S, Ackerman G, Taylor WP, Kozuba M, Inskeep WP (2009) Linking microbial oxidation of arsenic with detection and phylogenetic analysis of arsenite oxidase genes in diverse geothermal environments. Environ Microbiol 11:421–431

    Article  CAS  PubMed  Google Scholar 

  • Hanada S, Takaichi S, Matsuura K, Nakamura K (2002) Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52:187–193

    Article  CAS  PubMed  Google Scholar 

  • Herrera A, Cockell CS (2007) Exploring microbial diversity in volcanic environments: a review of methods in DNA extraction. J Microbiol Methods 70:1–12

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann L, Komárek J, Kaštovský J (2005) System of cyanoprokaryotes (Cyanobacteria)—state in 2004. Algol Stud 117:95–115

    Article  Google Scholar 

  • Howard-Azzeh M, Shamseer L, Schellhorn HE, Gupta RS (2014) Phylogenetic analysis and molecular signatures defining a monophyletic clade of heterocystous Cyanobacteria and identifying its closest relatives. Photosynth Res 122:171–185

    Article  CAS  PubMed  Google Scholar 

  • Itoh T, Suzuki KI, Nakase T (2002) Vulcanisaeta distributa gen. nov., sp. nov., and Vulcanisaeta souniana sp. nov., novel hyperthermophilic, rod-shaped crenarchaeotes isolated from hot springs in Japan. Int J Syst Evol Microbiol 52:1097–1104

    CAS  PubMed  Google Scholar 

  • Johnson DB, Hallberg K (2003) The microbiology of acidic mine waters. Res Microbiol 154:466–473

    Article  CAS  PubMed  Google Scholar 

  • Kaštovský J, Johansen JR (2008) Mastigocladus laminosus (Stigonematales, Cyanobacteria): phylogenetic relationship of strains from thermal springs to soil-inhabiting genera of the order and taxonomic implications for the genus. Phycology 47:307–320

    Article  Google Scholar 

  • Kelly DP, Wood AP (2000) Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov. and Thermithiobacillus gen. nov. Int J Syst Evol Microbiol 50:511–516

    Article  PubMed  Google Scholar 

  • Komárek J (2006) Cyanobacterial taxonomy: current problems and prospects for the integration of traditional and molecular approaches. Algae 21:349–375

    Article  Google Scholar 

  • Komárek J (2007) Phenotype diversity of the cyanobacterial genus Leptolyngbya in maritime Antarctica. Pol Polar Res 28:211–231

    Google Scholar 

  • Kotelev MS, Antonov IA, Beskorovainyi AV, Vinokurov VA (2013) Photobioreactor operation condition optimization for high-energy cyanobacterial biomass synthesis to produce third-generation biofuels. Chem Tech Fuels Oils 49:1–4

    Article  CAS  Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Stackebrandt E, Goodfellow M (eds) Nucleic acid techniques in bacterial systematic. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Lavalle L, Chiacchiarini P, Pogliani C, Donati E (2005) Isolation and characterization of acidophilic bacteria from Patagonia, Argentina. Process Biochem 40:1095–1099

    Article  CAS  Google Scholar 

  • Ludwig W, Strunk O, Westram R, Richter L, Meier H, Buchner A, Schleifer KH (2004) ARB: a software environment for sequence data. Nucleic Acids Res 32:1363–1371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Machado IMP, Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162:50–56

    Article  CAS  PubMed  Google Scholar 

  • Manz W, Amann R, Ludwig W, Wagner M, Schleifer KH (1992) Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst Appl Microbiol 15:593–600

    Article  Google Scholar 

  • Mas G, Mas L, Bengochea L (1996) Hydrothermal, surface alteration in the Copahue geothermal field (Argentina). In: Proceedings twenty-fifth workshop on geothermal reservoir engineering, Stanford University. Stanford, California, pp 22–24

  • Massana R, Murray AE, Preston CM, Delong EF (1997) Vertical distribution and phylogenetic characterization of marine planktonic Archaea in the Santa Barbara Channel. Appl Environ Microbiol 63:50–56

    PubMed Central  CAS  PubMed  Google Scholar 

  • Moreira D, Amils R (1997) Phylogeny of Thiobacillus cuprinus and other mixotrophic Thiobacilli: proposal for Thiomonas gen. nov. Int J Syst Evol Microbiol 47:522–528

    CAS  Google Scholar 

  • Mori K, Iino T, Ishibashi J, Kimura H, Hamada M, Suzuki K (2012) Meiothermus hypogaeus sp. nov., a moderately thermophilic bacterium isolated from a hot spring. Int J Syst Evol Microbiol 62:112–117

    Article  CAS  PubMed  Google Scholar 

  • Neef A (1997) Anwendung der in situ-Einzelzell-Identifizierung von Bakterien zur Populations analyse in komplexen mikrobiellen Biozonösen. Ph.D. thesis. Technical University of Munich, Munich, Germany

  • Nübel U, Bateson MM, Madigan MT, Kühl M, Ward DM (2001) Diversity and distribution in hypersaline microbial mats of bacteria related to Chloroflexus spp. Appl Environ Microbiol 67:4365–4371

    Article  PubMed Central  PubMed  Google Scholar 

  • Parker SR, Gammons CH, Pedrozo FL, Wood SA (2008) Diel changes in metal concentrations in a geogenically acidic river: Rio Agrio, Argentina. J Volcanol Geoth Res 178:213–223

    Article  CAS  Google Scholar 

  • Pernthaler A, Pernthaler J, Amann R (2002) Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol 68:3094–3101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prabaharan D, Arun-Kumar D, Uma L, Subramanian G (2010) Dark hydrogen production in nitrogen atmosphere, an approach for sustainability by marine cyanobacterium Leptolyngbya valderiana BDU 20041. Int J Hydrog Energ 35:10725–10730

    Article  CAS  Google Scholar 

  • Roeselers G, Norris TB, Castenholz RW, Rysgaard S, Glud RN, Kühl M, Muyzer G (2007) Diversity of phototrophic bacteria in microbial mats from Arctic hot springs (Greenland). Environ Microbiol 9:26–38

    Article  CAS  PubMed  Google Scholar 

  • Ruff-Roberts AL, Kuenen JG, Ward DM (1994) Distribution of cultivated and uncultivated Cyanobacteria and Chloroflexus-like bacteria in hot spring microbial mats. Appl Environ Microbiol 60:425–468

    Google Scholar 

  • Rusch A, Amend JP (2004) Order-specific 16S rRNA-targeted oligonucleotide probes for (hyper)thermophilic archaea and bacteria. Extremophiles 8:357–366

    Article  CAS  PubMed  Google Scholar 

  • Scanlan DJ, Nyree J (2002) Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. FEMS Microbiol Ecol 40:1–12

    Article  CAS  PubMed  Google Scholar 

  • Schloss PD (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Appl Environ Microbiol 71:1501–1506

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shi T, Falkowski PG (2008) Genome evolution in cyanobacteria: the stable core and the variable shell. Proc Natl Acad Sci USA 105:2510–2515

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Skirnisdottir S, Hreggvidsson GO, Hjörleifsdottir S, Marteinsson VT, Petursdottir SK, Holst O, Kristjansson JK (2000) Influence of sulfide and temperature on species composition and community structure of hot spring microbial mats. Appl Environ Microbiol 66:2835–2841

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Souza-Egipsy V, González-Toril E, Zettler E, Amaral-Zettler LA, Aguilera A, Amils R (2008) Prokaryotic community structure in algal photosynthetic biofilms from extreme acidic streams in Río Tinto (Huelva, Spain). Int Microbiol 11:251–260

    CAS  PubMed  Google Scholar 

  • Stal LJ (2000) Cyanobacterial mats and stromatolites. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 61–120

    Google Scholar 

  • Steinberg CEW, Schäfer H, Beisker W (1998) Do acid-tolerant Cyanobacteria exist? Acta Hydroch Hydrob 26:13–19

    Article  CAS  Google Scholar 

  • Stohr R, Waberski A, Volker H, Tindall BJ, Thomm M (2001) Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum ‘Hydrogenobacter/Aquifex’. Int J Syst Evol Microbiol 51:1853–1862

    Article  CAS  PubMed  Google Scholar 

  • Taton A, Grubisic S, Balthasart P, Hodgson DA, Laybourn-Parry J, Wilmotte A (2006) Biogeographical distribution and ecological ranges of benthic Cyanobacteria in East Antarctic lakes. FEMS Microbiol Ecol 57:272–289

    Article  CAS  PubMed  Google Scholar 

  • Thornburg CC, Thimmaiah M, Shaala LA, Hau AM, Malmo JM, Ishmael JE, McPhail KL (2011) Cyclic depsipeptides, grassypeptolides D and E and Ibu-epidemethoxylyngbyastatin 3 from a red sea Leptolyngbya cyanobacterium. J Nat Prod 74:1677–1685

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tomitani A, Knoll AH, Cavanaugh CM, Ohno T (2006) The evolutionary diversification of Cyanobacteria: molecular–phylogenetic and paleontological perspectives. Proc Natl Acad Sci USA 103:5442–5447

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Urbieta MS, González-Toril E, Giaveno MA, Aguilera A, Donati E (2012) First prokaryotic biodiversity assessment using molecular techniques of an acidic river in Neuquén, Argentina. Microb Ecol 64:91–104

    Article  PubMed  Google Scholar 

  • Urbieta MS, González-Toril E, Aguilera A, Giaveno MA, Donati E (2014) Archaeal and bacterial diversity in five different hydrothermal ponds in the Copahue region in Argentina. Syst Appl Microbiol 37:429–441

    Article  Google Scholar 

  • Varekamp JC, Ouimette A, Herman S, Flynn KS, Bermúdez AH, Delpino DH (2009) Naturally acid waters from Copahue volcano, Argentina. Appl Geochem 24:208–220

    Article  CAS  Google Scholar 

  • Vincent WF (2009) Cyanobacteria. In: Likens GE (ed) Plankton of Inland Waters. Elsevier, London, pp 226–231

    Chapter  Google Scholar 

  • Volkl P, Huber R, Drobner E, Rachel R, Burggraf S, Trincone A, Stetter KO (1993) Pyrobaculum aerophilum sp. nov., a novel nitrate-reducing hyperthermophilic archaeum. Appl Environ Microbiol 59:2918–2926

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ward DM, Weller R, Shiea J, Castenholz RW, Cohen Y (1989) Hot spring microbial mats: anoxygenic and oxygenic mats of possible evolutionary significance. In: Cohen Y, Rosenburg E (eds) Microbial mats: physiological ecology of benthic microbial communities. American Society for Micriobiology, Washington, DC, pp 2–15

    Google Scholar 

  • Ward DM, Ferris MJ, Nold SC, Bateson MM, Kopczynski ED, Ruff-Roberts AL (1994) Species diversity in hot spring microbial mats as revealed by both molecular and enrichment culture approaches—relationship between biodiversity and community structure. In: Stal LJ, Caumette P (eds) Microbial mats: structure, development and environmental significance. Springer, Heidelberg, pp 33–44

    Chapter  Google Scholar 

  • Ward DM, Ferris MJ, Nold SC, Bateson MM (1998) A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62:1353–1370

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xie X, Xiao S, He Z, Liu J, Qiu G (2007) Microbial populations in acid mineral bioleaching systems of Tong Shankou Copper Mine, China. J Appl Microbiol 103:1227–1238

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Grants PIP 0348 (CONICET), PICT-2012-0623 (ANPCYT) and MICINN-Spain (CGL2011-22540).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Sofía Urbieta.

Additional information

Communicated by A. Oren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Urbieta, M.S., González-Toril, E., Bazán, Á.A. et al. Comparison of the microbial communities of hot springs waters and the microbial biofilms in the acidic geothermal area of Copahue (Neuquén, Argentina). Extremophiles 19, 437–450 (2015). https://doi.org/10.1007/s00792-015-0729-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-015-0729-2

Keywords

Navigation