Skip to main content
Log in

Purification and characterization of halo-alkali-thermophilic protease from Halobacterium sp. strain HP25 isolated from raw salt, Lake Qarun, Fayoum, Egypt

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

A total of 33 halophilic protease producers were isolated from different salt samples collected from Emisal salt company at Lake Qarun, Fayoum, Egypt. Of these strains, an extremely halophilic strain that grew optimally at 30 % (w/v) NaCl was characterized and identified as Halobacterium sp. strain HP25 based on 16S rRNA gene sequencing and phenotypic characterization. A halo-alkali-thermophilic protease was purified in three successive steps from the culture supernatant. The purified halophilic protease consisted of a single polypeptide chain with a molecular mass of 21 kDa and was enriched 167-fold to a specific activity of 6350 U mg−1. The purified enzyme was active over a broad pH range from 6.0 to 11.0, with maximum activity at pH 8.0, exhibited a broad temperature range from 30 to 80 °C with optimum activity at 60 °C, and was active at salt concentrations ranging from 5 to 25 % (w/v), with optimum activity at 17 % NaCl (w/v). The K M and V max values of the purified halophilic protease with casein as a substrate were 523 µg mL−1 and 2500 µg min−1 mL−1, respectively. In addition, this enzyme was stable in the tested organic solvents and laundry detergents such methanol, propanol, butanol, hexane, Persil and Ariel. The unusual properties of this enzyme allow it to be used for various applications, such as the ripening of salted fish. Furthermore, its stability and activity in the presence of organic solvents and detergents also allow the use of this enzyme for further novel applications and as an additive in detergent formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alqueres SC, Almeida RV, Clementino MM, Vieira RP, Almeida WI, Cardoso AM, Martins OB (2007) Exploring the biotechnological applications in the archaeal domain. Braz J Microbiol 38:398–405

    Article  Google Scholar 

  • Barett AJ (1994) Proteolytic enzymes: serine and cysteine peptidases. Methods Enzymol 244:1–15

    Article  Google Scholar 

  • Bhatnagar T, Boutaiba S, Hacene H, Cayol J, Fardeau M, Olivier B, Baratti J (2005) Lipolytic activity from halobacteria: screening and hydrolase production. FEMS Microbiol Lett 42:133–140

    Article  Google Scholar 

  • Beynon R, Bond JB (2001) Proteolytic enzymes, a practical approach. IRL Press, New York, p 113

    Google Scholar 

  • Bradford MM (1976) A dye binding assay for protein. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Colwell RR, Clayton RA, Ortiz-Conde BA, Jacobs D, Russek-Cohen E (1995) The microbial species concept and biodiversity. In: Allsopp D, Colwell R, Hawksworth L (eds) Microbial diversity and ecosystem function. Wallingford, UK, pp 3–15

    Google Scholar 

  • Delgado-García M, Valdivia-Urdiales B, Aguilar-González CN, Contreras-Esquivel JC, Rodríguez-Herrera R (2012) Halophilic hydrolases as a new tool for the biotechnological industries. J Sci Food Agric 92:2575–2580

    Article  PubMed  Google Scholar 

  • Fastrez J, Fersht AR (1973) Demonstration of the acyl-enzyme mechanism for the hydrolysis of peptides and anilides by chymotrypsin. Biochemistry 12:2025–2034

    Article  CAS  PubMed  Google Scholar 

  • Folin O, Ciocalteu V (1929) On tyrosine and tryptophan determination in proteins. J Biol Chem 73:627–649

    Google Scholar 

  • Gibbons NE (1974) The family Halobacteriaceae. In: Buchanan RE, Gibbons NE (eds) Bergey’s manual of determinative bacteriology, 8th edn. Williams and Wilkins, Baltimore, pp 269–272

    Google Scholar 

  • Gimenez MI, Studdert CA, Sanchez JJ, Decastro RE (2000) Extracellular protease of Natriala magadii; purification and biochemical characterization. Extremophiles 4:181–188

    Article  CAS  PubMed  Google Scholar 

  • Gomes J, Steiner M (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235

    CAS  Google Scholar 

  • Grant J, Hargrave B, MacPherson P (2002) Sediment properties and benthic–pelagic coupling in the North Water. Deep-Sea Res 49:5259–5275

    CAS  Google Scholar 

  • Gupta R, Beg QK, Khan S, Chauhan B (2002) An overview on fermentation, downstream processing and properties of microbial alkaline proteases. Appl Microbiol Biotechnol 60:381–395

    Article  CAS  PubMed  Google Scholar 

  • Hartley BS (1960) Proteolytic enzymes. Annu Rev Biochem 29:45–72

    Article  CAS  PubMed  Google Scholar 

  • Hezayen FF, Tindall BJ, Steinbüchel A, Rehm B (2002) Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitratireducens to Halobiforma nitratireducens comb. nov. Int J Syst Evol Microbiol 52:2272–2280

    Article  Google Scholar 

  • Izotova SL, Strongin AY, Chekulaeva LN, Sterkin NE, Ostoslavskaya VI, Lyublinskaya LA, Timokhina EA, Stepanova VM (1983) Purification and properties of serine protease from Halobacterium halobium. J Bacteriol 155:826–830

    CAS  PubMed Central  PubMed  Google Scholar 

  • Johnsen K, Andersen S, Jacobsen CS (1996) Phenotypic and genotypic characterization of phenanthrene-degrading fluorescent Pseudomonas biovars. Appl Environ Microbiol 62:3818–3825

    CAS  PubMed Central  PubMed  Google Scholar 

  • Juhasz O, Skarka B (1990) Purification and characterization of an extracellular proteinase from Brevibacterium linens. Can J Microbiol 36:510–512

    Article  CAS  Google Scholar 

  • Kamekura M, Seno YA (1990) Halophilic extracellular protease from a halophilic archaebacterium strain 172 p1. Biochem Cell Biol 68:352–359

    Article  CAS  PubMed  Google Scholar 

  • Kanlayakrit W, Bovornreungroj P, Oka T, Goto M (2004) Production and characterization of protease from an extremely halophilic Halobacterium sp. PB407. Kasetsart J (Nat Sci) 38:15–20

    CAS  Google Scholar 

  • Kim CJ, Oh MJ, Choi SH (1992) Characteristics of the alkaline proteinase from the moderate halophile, Halomonas sp. ES 10. J Korean Agric Chem Soc 35:37–41

    Google Scholar 

  • Kumar S, Karan R, Kapoor S, Singh S, Khare S (2012) Screening and isolation of halophilic bacteria producing industrially important enzymes. Braz J Microbiol 43:1595–1603

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Lorentz KA (1976) Simple polyacrylamide gradient gel preparation for estimating molecular weights. Anal Biochem 76:214–220

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Schiner F (2001) Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83

    Article  CAS  PubMed  Google Scholar 

  • Mesbah NM, Wiegel J (2014) Purification and biochemical characterization of halophilic alkalithermophilic protease AbCP from Alkalibacillus sp. NM-Fa4. J Mol Catal B Enzym 105:74–81

    Article  CAS  Google Scholar 

  • Moreno M, Pérez D, Garcia MT, Mellado E (2013) Halophilic bacteria as a source of novel hydrolytic enzymes. Life 3:38–51

    Article  CAS  Google Scholar 

  • Mormile MR, Biesen MA, Gutierrez MC, Ventosa A, Pavlovich JB, Onstott TC, Fredrickson JK (2003) Isolation of Halobacterium salinarum retrieved directly from halite brine inclusions. Environ Microbiol 5:1094–1102

    Article  PubMed  Google Scholar 

  • Murray E, Brenner J, Colwell R, De Vos P, Goodfellow M, Grimont D, Pfennig N, Stackebrandt E, Zavarzin A, International Committee on Systematic Bacteriology (1990) Report of the ad hoc committee on approaches to taxonomy within the Proteobacteria. Int J Syst Bacteriol 40:213–215

    Article  Google Scholar 

  • Oren A (2002) The order Halobacteriales. In: Dworkin M (ed) The prokaryotes: an evolving electronic resource for the microbiological community. Springer-Verlag, New York. URL:http://www.prokaryotes.com. [WWW document]

  • Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2012) Taxonomy of the family Halobacteriaceae: a paradigm for changing concepts in prokaryote systematics. Int J Syst Evol Microbiol 62:263–271

    Article  PubMed  Google Scholar 

  • Oren A, Gurevich P, Gemmell RT, Teske A (1995) Halobaculum gomorrense gen. nov., sp. nov., a novel extremely halophilic archaeon from Dead Sea. Int J Syst Bacteriol 45:747–754

    Article  CAS  PubMed  Google Scholar 

  • Page RDM (1996) Tree view: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Rao B, Tanksale A, Ghatge M, Deshpande V (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol Rev 62:597–635

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (2007) Methods for general and molecular microbiology, 3rd edn. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Rodriguez-Valera F, Lillo JG (1992) Halobacteria as producers of polyhydroxyalkanoates. FEMS Microbiol Rev 103:181–186

    Article  CAS  Google Scholar 

  • Rohban R, Amoozegar MA, Ventosa A (2009) Screening and isolation of halophilic bacteria producing extracellular hydrolysis from Howz Soltan Lake, Iran. J Ind Microbiol Biotechnol 36:333–340

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, New York, pp 10.51–10.67

    Google Scholar 

  • Sehgal SN, Gibbons NE (1960) Effect of metal ions on the growth of Halobacterium cutirubrum. Can J Microbiol 6:165–169

    Article  CAS  PubMed  Google Scholar 

  • Selim S, Hagagy N, Abdel Aziz M, El-Meleigy E, Pessione E (2014) Thermostable alkaline halophilic-protease production by Natronolimnobius innermongolicus WN18. Nat Prod Res 28:1476–1479

    Article  CAS  PubMed  Google Scholar 

  • Sinha R, Khare SK (2012) Isolation and characterization of halophilic Virgibacillus sp. EMB13: purification and characterization of its protease for detergent application. Indian J Biotechnol 11:416–426

    CAS  Google Scholar 

  • Studdert CA, Herrera MK, Gil MP, Sanchez JJ, De Castro RE (2001) Purification, biochemical characterization of the haloalkaliphilic archeon Natronococcus occultus extracellular serine protease. J Gen Microbiol 41:375–383

    CAS  Google Scholar 

  • Sumantha A, Larroche C, Pandey A (2006) Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food Technol Biotechnol 44:211–220

    CAS  Google Scholar 

  • Takii Y, Kuriyama N, Suzuki Y (1990) Alkaline serine protease produced from citric acid by Bacillus alkalophilus subsp. halodurans KP 1239. Appl Microbiol Biotechnol 34:57–62

    Article  CAS  PubMed  Google Scholar 

  • Thompson J, Gibson TJ, Plewinak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4867-488

    Article  Google Scholar 

  • Ventosa A, Nieto JJ (1995) Biotechnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotechnol 11:85–94

    Article  CAS  PubMed  Google Scholar 

  • Ventosa A, Oren A (1996) Halobacterium salinarum nom. corrig., a name to replace Halobacterium salinarium (Elazari-Volcani) and to include Halobacterium halobium and Halobacterium cutirubrum. Int J Syst Bacteriol 46:347

    Article  Google Scholar 

  • Vidyasagar M, Prakash S, Mahajan V, Yogesh S, Shouche KS (2009) Purification and characterization of an extreme halothermophilic protease from bacterium Chromohalobacter sp. TVSP101. Braz J Microbiol 40:12–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Voet O, Voet JG (2004) Biochemistry, 3rd edn. Wiley, USA, pp 521–527

    Google Scholar 

  • Woese C (1993) The archaea: their history and significance. In: Kates M, Kushner D, Matheson A (eds) The biochemistry of archaea (Archaebacteria). Elsevier, Amsterdam, pp vii–xxix

    Chapter  Google Scholar 

  • Yachai M, Tanasupawat S, Itoh T, Benjakul S, Visessanguan W, Valyasevi R (2008) Halobacterium piscisalsi sp. nov., from fermented fish (pla-ra) in Thailand. Int J Syst Evol Microbiol 58:2136–2140

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Cui HL, Zhou PJ, Lie SJ (2006) Halobacterium jilantaiense sp. nov., a halophilic archaeon isolated from a saline lake in Inner Mongolia, China. Int J Syst Bacteriol 56:2353–2355

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Martin Krehenbrink for helpful revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Elbanna.

Additional information

Communicated by F. Robb.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 495 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elbanna, K., Ibrahim, I.M. & Revol-Junelles, AM. Purification and characterization of halo-alkali-thermophilic protease from Halobacterium sp. strain HP25 isolated from raw salt, Lake Qarun, Fayoum, Egypt. Extremophiles 19, 763–774 (2015). https://doi.org/10.1007/s00792-015-0752-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-015-0752-3

Keywords

Navigation