Skip to main content
Log in

Characterization of two novel heat-active α-galactosidases from thermophilic bacteria

  • Special Feature: Original Paper
  • 11th International Congress on Extremophiles
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

Two genes (agal1 and agal2) encoding α-galactosidases were identified by sequence-based screening approaches. The gene agal1 was identified from a data set of a sequenced hot spring metagenome, and the deduced amino-acid sequence exhibited 99% identity to an α-galactosidase from the thermophilic bacterium Dictyoglomus thermophilum. The gene agal2 was identified from the whole genome sequence of the thermophile Meiothermus ruber. The amino-acid sequences exhibited structural motifs typical for glycoside hydrolase (GH) family 36 members and were also differentiated into different subgroups of this family. Recombinant production of the heat-active GH36b enzyme Agal1 (87 kDa) and GH36bt enzyme Agal2 (57 kDa) was carried out in E. coli. Agal1 exhibited a specific activity of 1502.3 U/mg at 80 °C, pH 6.5, and Agal2 225.4 U/mg at 60–70 °C, pH 6.5. Half-lives of 14 h (Agal1) and 39 h (Agal2) were obtained at 50 °C, and Agal1 showed half-lives of 4 and 2 h at 70 and 80 °C, respectively. In addition to the natural substrates melibiose, raffinose, and stachyose, 4NP α-d-galactopyranoside was hydrolyzed. Galactose was also liberated from locust bean gum. Both heat-active enzymes are attractive candidates for application in food and feed industry for high-temperature processes for the degradation of raffinose family oligosaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anisha GS, John RP, Prema P (2009) Biochemical and hydrolytic properties of multiple thermostable α-galactosidases from Streptomyces griseoloalbus: obvious existence of a novel galactose-tolerant enzyme. Process Biochem 44(3):327–333

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of micro-gram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Britton HTS and Robinson RA (1931) Universal buffer solutions and the dissociation constant of veronal. J Chem Soc 1456–73

  • Brouns SJ, Smits N, Wu H, Snijders AP, Wright PC, de Vos WM, van der Oost J (2006) Identification of a novel a-galactosidase from the hyperthermophilic archaeon Sulfolobus solfataricus. J Bacteriol 88:2392–2399

    Article  Google Scholar 

  • Coil DA, Badger JH, Forberger HC, Riggs F, Madupu R, Fedorova N, Ward N, Robb FT, Eisen JA (2014) Complete genome sequence of the extreme thermophile Dictyoglomus thermophilum H-6-12. Genome Announc 20 2(1)

  • Elleuche S, Schröder C, Sahm K, Antranikian G (2014) Extremozymes—biocatalysts with unique properties from extremophilic microorganisms. Curr Opin Biotechnol 29:116–123

    Article  CAS  PubMed  Google Scholar 

  • Fredslund F, Hachem MA, Larsen RJ, Sørensen PG, Coutinho PM, Lo Leggio L, Svensson B (2011) Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding. J Mol Biol 412(3):466–480

    Article  CAS  PubMed  Google Scholar 

  • Fridjonsson O, Watzlawick H, Gehweiler A, Rohrhirsch T, Mattes R (1999) Cloning of the gene encoding a novel thermostable alpha-galactosidase from Thermus brockianus ITI360. Appl Environ Microbiol 65(9):3955–3963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ganter C, Böck A, Buckel P, Mattes R (1988) Production of thermostable, recombinant α-galactosidase suitable for raffinose elimination from sugar beet syrup. J Biotechnol 8:301–310

    Article  CAS  Google Scholar 

  • Gote MM, Khan MI, Gokhale CV, Bastawde KB, Khire JB (2006) Purification, characterization and substrate specificity of thermostable α-galactosidase from Bacillus stearothermophilus (NCIM-5146). Process Biochem 41(6):1311–1317

    Article  CAS  Google Scholar 

  • Henrissat B, Davies G (1997) Structural and sequence-based classification of glycoside hydrolases. Curr Opin Struct Biol 7(5):637–644

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro M, Kaneko S, Kuno A, Koyama Y, Yoshida S, Park GG, Sakakibara Y, Kusakabe I, Kobayashi H (2001) Purification and characterization of the recombinant Thermus sp. strain T2 alpha-galactosidase expressed in Escherichia coli. Appl Environ Microbiol 67(4):1601–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katrolia P, Jia H, Yan Q, Song S, Jiang Z, Xu H (2012) Characterization of a protease-resistant α-galactosidase from the thermophilic fungus Rhizomucor miehei and its application in removal of raffinose family oligosaccharides. Bioresour Technol 110:578–586

    Article  CAS  PubMed  Google Scholar 

  • Katrolia P, Rajashekhara E, Yan Q, Jiang Z (2014) Biotechnological potential of microbial α-galactosidases. Crit Rev Biotechnol 34(4):307–317

    Article  CAS  PubMed  Google Scholar 

  • Keller F, Pharr DM (1996) Metabolism of carbohydrates in sink and sources: galactosyl-sucrose oligosaccharides. Photoassimilate distribution in plants and crops: source–sink relationships. Marcel Dekker, New York, pp 157–183

  • Kondoh K, Morisaki K, Kim W-D, Kotwal SM, Kaneko S, Kobayashi H (2005) Expression of Streptomyces coelicolor α-galactosidase gene in Escherichia coli and characterization. Food Sci Technol Res 11(2):207–213

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc JG, Garro MS, Silvestroni A, Connes C, Piard JC, Sesma F, Savoy de Giori G (2004) Reduction of alpha-galactooligosaccharides in soyamilk by Lactobacillus fermentum CRL 722: in vitro and in vivo evaluation of fermented soyamilk. J Appl Microbiol 97(4):876–881

    Article  CAS  PubMed  Google Scholar 

  • Liebl W, Wagner B, Schellhase J (1998) Properties of an α-galactosidase, and structure of its gene galA, within an α- and β-galactoside utilization gene cluster of the hyperthermophilic bacterium Thermotoga maritima. Syst Appl Microbiol 21:1–11

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Champagne CP, Lee BH, Boye JI (2014) Casgrain M (2014) Thermostability of probiotics and their α-galactosidases and the potential for bean products. Biotechnol Res Int 2014:472723. doi:10.1155/2014/472723

    Article  PubMed  PubMed Central  Google Scholar 

  • Loginova LG, Egorova LA, Golovacheva RS, Sevegina LM (1984) Thermus ruber sp. nov., nom. rev. Int J Syst Bacteriol 34:498–499

    Article  Google Scholar 

  • Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2014) The Carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495

    Article  CAS  PubMed  Google Scholar 

  • Malgas S, van Dyk JS, Pletschke BI (2015) A review of the enzymatic hydrolysis of mannans and synergistic interaction between β-mannanase, β-mannosidase and α-galactosidase. World J Microbiol Biotechnol 31:1167–1175

    Article  CAS  PubMed  Google Scholar 

  • Morel CF, Clarke JT (2009) The use of agalsidase alfa enzyme replacement therapy in the treatment of Fabry disease. Expert Opin Biol Ther 9:631–639

    Article  CAS  PubMed  Google Scholar 

  • Sahm K, John P, Nacke H, Wemheuer B, Grote R, Daniel R, Antranikian R (2013) High abundance of heterotrophic prokaryotes in hydrothermal springs of the Azores as revealed by a network of 16S rRNA gene-based methods. Extremophiles 17:649–662

    Article  CAS  PubMed  Google Scholar 

  • Saiki T, Kobayashi Y, Kawagoe K, Beppu T (1985) Dictyoglomus thermophilum gen. nov., sp. nov., a chemoorganotrophic, anaerobic, thermophilic bacterium. Int J Syst Bacteriol 35:253–259

    Article  Google Scholar 

  • Tindall BJ, Sikorski J, Lucas S, Goltsman E, Copeland A, Glavina Del Rio T, Nolan M, Tice H, Cheng JF, Han C, Pitluck S, Liolios K, Ivanova N, Mavromatis K, Ovchinnikova G, Pati A, Fähnrich R, Goodwin L, Chen A, Palaniappan K, Land M, Hauser L, Chang YJ, Jeffries CD, Rohde M, Göker M, Woyke T, Bristow J, Eisen JA, Markowitz V, Hugenholtz P, Kyrpides NC, Klenk HP, Lapidus A (2010) Complete genome sequence of Meiothermus ruber type strain (21). Stand Genomic Sci 1:26–36

    Article  Google Scholar 

  • Wang H, Ma R, Shi P, Xue X, Luo H, Huang H, Bai Y, Yang P, Yao B (2014) A new α-galactosidase from thermoacidophilic Alicyclobacillus sp. A4 with wide acceptor specificity for transglycosylation. Appl Biochem Biotechnol 174(1):328–338

    Article  CAS  PubMed  Google Scholar 

  • Zhou JZ, Bruns MA, Tiedje JM (1996) DNA recovery from soils of diverse composition. Appl Environ Microbiol 62:316–322

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks are due to Henning Piascheck and Henning Lübberding for experimental assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garabed Antranikian.

Additional information

Communicated by M. da Costa.

This article is part of a special feature based on the 11th International Congress on Extremophiles held in Kyoto, Japan, September 12–16, 2016.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schröder, C., Janzer, VA., Schirrmacher, G. et al. Characterization of two novel heat-active α-galactosidases from thermophilic bacteria. Extremophiles 21, 85–94 (2017). https://doi.org/10.1007/s00792-016-0885-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-016-0885-z

Keywords

Navigation