Skip to main content
Log in

RNA transcript response by an Acidithiobacillus spp. mixed culture reveals adaptations to growth on arsenopyrite

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

This article has been updated

Abstract

Biooxidation of gold-bearing refractory mineral ores such as arsenopyrite (FeAsS) in stirred tanks produces solutions containing highly toxic arsenic concentrations. In this study, ferrous iron and inorganic sulfur-oxidizing Acidithiobacillus strain IBUN Ppt12 most similar to Acidithiobacillus ferrianus and inorganic sulfur compound oxidizing Acidithiobacillus sp. IBUNS3 were grown in co-culture during biooxidation of refractory FeAsS. Total RNA was extracted and sequenced from the planktonic cells to reveal genes with different transcript counts involved in the response to FeAsS containing medium. The co-culture’s response to arsenic release during biooxidation included the ars operon genes that were independently regulated according to the arsenopyrite concentration. Additionally, increased mRNA transcript counts were identified for transmembrane ion transport proteins, stress response mechanisms, accumulation of inorganic polyphosphates, urea catabolic processes, and tryptophan biosynthesis. Acidithiobacillus spp. RNA transcripts also included those encoding the Rus and PetI proteins involved in ferrous iron oxidation and gene clusters annotated as encoding inorganic sulfur compound metabolism enzymes. Finally, mRNA counts of genes related to DNA methylation, management of oxidative stress, chemotaxis, and motility during biooxidation were decreased compared to cells growing without mineral. The results provide insights into the adaptation of Acidithiobacillus spp. to growth during biooxidation of arsenic-bearing sulfides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

adapted from Quatrini et al. (2009). Rus, rusticyanin; NDH1, NADH complex; Cyt bc1, cytochrome bc1 (complex III, ubiquinol-cytochrome c reductase)

Fig. 4

adapted from Christel et al. (2016)

Fig. 5

Similar content being viewed by others

Change history

  • 03 March 2021

    The original version is updated due to request on inclusion of missing supplementary files.

References

  • Alvarez S, Jerez CA (2004) Copper ions stimulate polyphosphate degradation and phosphate efflux in Acidithiobacillus ferrooxidans. Appl Environ Microbiol 70:5177–5182

    Article  CAS  Google Scholar 

  • Armitage JP, Berry RM (2010) Time for bacteria to slow down. Cell 141:24–26

    Article  CAS  PubMed  Google Scholar 

  • Baker-Austin C, Dopson M (2007) Life in acid: pH homeostasis in acidophiles. Trends Microbiol 15:165–171

    Article  CAS  PubMed  Google Scholar 

  • Barragán CE, Márquez MA, Dopson M, Montoya D (2020) Isolation of arsenic resistant and arsenopyrite oxidizing Acidithiobacillus species from pH neutral Colombian mine effluents. Geomicrobiol J 37:682–689

    Article  CAS  Google Scholar 

  • Bellenberg S, Díaz M, Noël N, Sand W, Poetsch A, Guiliani N et al (2014) Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces. Res Microbiol 165:773–781

    Article  CAS  PubMed  Google Scholar 

  • Bellenberg S, Huynh D, Castro L, Boretska M, Sand W, Vera M (2015) Reactive oxygen species influence biofilm formation of acidophilic mineral-oxidizing bacteria on pyrite. Adv Mat Res 1130:118–122

    Google Scholar 

  • Bellenberg S, Huynh D, Poetsch A, Sand W, Vera M (2019) Proteomics reveal enhanced oxidative stress responses and metabolic adaptation in Acidithiobacillus ferrooxidans biofilm cells on pyrite. Front Microbiol 10:592

    Article  PubMed  PubMed Central  Google Scholar 

  • Ben Fekih I, Zhang C, Li YP, Zhao Y, Alwathnani HA, Saquib Q et al (2018) Distribution of arsenic resistance genes in prokaryotes. Front Microbiol 9:2473

    Article  PubMed  PubMed Central  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bonnefoy V, Holmes DS (2012) Genomic insights into microbial oxidation and iron homeostasis in extremely acidic environments. Environ Microbiol 14:1597–1611

    Article  CAS  PubMed  Google Scholar 

  • Brasseur G, Levicán G, Bonnefoy V, Holmes DS, Jedlicki E, Lemesle-Meunier D (2004) Apparent redundancy of electron transfer pathways via bc1 complexes and terminal oxidases in the extremophilic chemolithoautotrophic Acidithiobacillus ferrooxidans. Biochim Biophys Acta 1656:114–126

    Article  CAS  PubMed  Google Scholar 

  • Brierley C (2016) Biological processing: Biological processing of sulfidic ores and concentrates-integrating innovations. In: Roy R, Ramachandran V (eds) Lakshmanan VI. Innovative Process Development in Metallurgical Industry, Springer International Publishing, pp 109–135

    Google Scholar 

  • Bruscella P, Appia-Ayme C, Levicán G, Ratouchniak J, Jedlicki E, Holmes DS et al (2007) Differential expression of two bc1 complexes in the strict acidophilic chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans suggests a model for their respective roles in iron or sulfur oxidation. Microbiology 153:102–110

    Article  CAS  PubMed  Google Scholar 

  • Bull AT (2010) The renaissance of continuous culture in the post-genomics age. J Ind Microbiol Biot 37:993–1021

    Article  CAS  Google Scholar 

  • Bushnell B (2014) BBMap–sourceforge. net/projects/bbmap/. https://jgi.doe.gov/data-and-tools/bbtools. Accessed 13 Oct 2020

  • Butcher BG, Rawlings DE (2002) The divergent chromosomal ars operon of Acidithiobacillus ferrooxidans is regulated by an atypical ArsR protein. Microbiology 148:3983–3992

    Article  CAS  PubMed  Google Scholar 

  • Butcher BG, Deane SM, Rawlings DE (2000) The chromosomal arsenic resistance genes of Thiobacillus ferrooxidans have an unusual arrangement and confer increased arsenic and antimony resistance to Escherichia coli. Appl Environ Microbiol 66:1826–1833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cappelletti M, Fedi S, Zampolli J, Di Canito A, D’Ursi P, Orro A et al (2016) Phenotype microarray analysis may unravel genetic determinants of the stress response by Rhodococcus aetherivorans BCP1 and Rhodococcus opacus R7. Res Microbiol 167:766–773

    Article  CAS  PubMed  Google Scholar 

  • Cárdenas JP, Moya F, Covarrubias P, Shmaryahu A, Levicán G, Holmes DS et al (2012) Comparative genomics of the oxidative stress response in bioleaching microorganisms. Hydrometallurgy 127:162–167

    Article  CAS  Google Scholar 

  • Castro C, Zhang R, Liu J, Bellenberg S, Neu TR, Donati E et al (2016) Biofilm formation and interspecies interactions in mixed cultures of thermo-acidophilic archaea Acidianus spp. and Sulfolobus metallicus. Res Microbiol 167:604–612

    Article  PubMed  Google Scholar 

  • Castro M, Moya-Beltrán A, Covarrubias PC, González M, Cárdenas JP, Issotta F et al (2017) Draft genome sequence of the type strain of the sulfur-oxidizing acidophile, Acidithiobacillus albertensis (DSM 14366). Stand Genomic Sci 12:77

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen L, Ren Y, Lin J, Liu X, Pang X, Lin J (2012) Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant. PLoS ONE 7:e39470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Bhattacharjee H, Rosen BP (2015) ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth promoter roxarsone. Mol Microbiol 96:1042–1052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christel S, Fridlund J, Buetti-Dinh A, Buck M, Watkin EL, Dopson M (2016) RNA transcript sequencing reveals inorganic sulfur compound oxidation pathways in the acidophile Acidithiobacillus ferrivorans. FEMS Microbiol Lett 363:fnw057

  • Christel S, Herold M, Bellenberg S, Buetti-Dinh A, El Hajjami M, Pivkin IV et al (2018) Weak iron oxidation by Sulfobacillus thermosulfidooxidans maintains a favorable redox potential for chalcopyrite bioleaching. Front Microbiol 9:3059

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohn CA, Mueller S, Wimmer E, Leifer N, Greenbaum S, Strongin DR et al (2006) Pyrite-induced hydroxyl radical formation and its effect on nucleic acids. Geochem Trans 7:1–11

    Article  CAS  Google Scholar 

  • Coram NJ, Rawlings DE (2002) Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40 °C. Appl Environ Microbiol 68:838–845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corkhill CL, Vaughan DJ (2009) Arsenopyrite oxidation: a review. Appl Geochem 24:2342–2361

    Article  CAS  Google Scholar 

  • Dopson M, Holmes DS (2014) Metal resistance in acidophilic microorganisms and its significance for biotechnologies. Appl Microbiol Biotechnol 98:8133–8144

    Article  CAS  PubMed  Google Scholar 

  • Dopson M, Johnson DB (2012) Biodiversity, metabolism and applications of acidophilic sulfur-metabolizing microorganisms. Environ Microbiol 14:2620–2631

    Article  CAS  PubMed  Google Scholar 

  • Dopson M, Lindström EB (1999) Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl Environ Microbiol 65:36–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dopson M, Baker-Austin C, Koppineedi PR, Bond PL (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149:1959–1970

    Article  CAS  PubMed  Google Scholar 

  • Dopson M, Ossandon F, Lövgren L, Holmes DS (2014) Metal resistance or tolerance? Acidophiles confront high metal loads via both abiotic and biotic mechanisms. Front Microbiol 5:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Ehrenfeld N, Levicán G, Parada P (2013) Heterodisulfide reductase from Acidithiobacilli is a key component involved in metabolism of reduced inorganic sulfur compounds. Adv Mat Res 825:194–197

    Google Scholar 

  • Fan W, Peng Y, Meng Y, Zhang W, Zhu N, Wang J et al (2018) Transcriptomic analysis reveals reduced inorganic sulfur compound oxidation mechanism in Acidithiobacillus ferriphilus. Microbiology 87:486–501

    Article  CAS  Google Scholar 

  • Gahan CS, Srichandan H, Kim AA (2012) Biohydrometallurgy and biomineral processing technology: a review on its past, present and future. Res J Recent Sci 2277:2502

    Google Scholar 

  • Ghosh W, Dam B (2009) Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. FEMS Microbiol Rev 33:999–1043

    Article  CAS  PubMed  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J et al (2013) de novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 8:1494

    Article  CAS  PubMed  Google Scholar 

  • Hackl RP, Wright FR, Bruynesteyn A (1989) U.S. Patent No. 4,888,293. Washington, DC: U.S. Patent and Trademark Office

  • Harneit K, Goksel A, Kock D, Klock JH, Gehrke T, Sand W (2006) Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans. Hydrometallurgy 83:245–254

    Article  CAS  Google Scholar 

  • Holmes DS, Bonnefoy V (2007) Genetic and bioinformatic insights into iron and sulfur oxidation mechanisms of bioleaching organisms. In: Rawlings DE, Johnson DB (eds) Biomining. Springer, Berlin, Heidelberg, pp 281–307

    Chapter  Google Scholar 

  • Hong J, Silva RA, Park J, Lee E, Park J, Kim H (2016) Adaptation of a mixed culture of acidophiles for a tank biooxidation of refractory gold concentrates containing a high concentration of arsenic. J Biosci Bioengin 121:536–542

    Article  CAS  Google Scholar 

  • Imlay JA (2003) Pathways of oxidative damage. Ann Rev Microbiol 57:395–418

    Article  CAS  Google Scholar 

  • Jiang H, Liang Y, Yin H, Xiao Y, Guo X, Xu Y et al (2015) Effects of arsenite resistance on the growth and functional gene expression of Leptospirillum ferriphilum and Acidithiobacillus thiooxidans in pure culture and coculture. Biomed Res Int 2015:203197

    Google Scholar 

  • Johnson DB (2008) Biodiversity and interactions of acidophiles: key to understanding and optimizing microbial processing of ores and concentrates. Trans Nonferr Metal Soc 18:1367–1373

    Article  CAS  Google Scholar 

  • Kaksonen AH, Mudunuru BM, Hackl R (2014) The role of microorganisms in gold processing and recovery: a review. Hydrometallurgy 142:70–83

    Article  CAS  Google Scholar 

  • Kang YS, Brame K, Jetter J, Bothner BB, Wang G, Thiyagarajan S et al (2016) Regulatory activities of four ArsR proteins in Agrobacterium tumefaciens 5A. Appl Environ Microb 82:3471–3480

    Article  CAS  Google Scholar 

  • Kelly D, Wood AE (2014) The Family Acidithiobacillaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: gammaproteobacteria. Springer-Verlag, Berlin, Heidelberg, pp 15–25

    Google Scholar 

  • Kondratyeva TF, Muntyan LN, Karavaiko GI (1995) Zinc-and arsenic resistant strains of Thiobacillus ferrooxidans have increased copy numbers of chromosomal resistance genes. Microbiology 141:1157–1162

    Article  CAS  PubMed  Google Scholar 

  • Kotze AA, Tuffin IM, Deane SM, Rawlings DE (2006) Cloning and characterization of the chromosomal arsenic resistance genes from Acidithiobacillus caldus and enhanced arsenic resistance on conjugal transfer of ars genes located on transposon TnAtcArs. Microbiology 152:3551–3560

    Article  CAS  PubMed  Google Scholar 

  • Kupka D, Liljeqvist M, Nurmi P, Puhakka JA, Tuovinen OH, Dopson M (2009) Oxidation of elemental sulfur, tetrathionate and ferrous iron by the psychrotolerant Acidithiobacillus strain SS3. Res Microbiol 160:767–774

    Article  CAS  PubMed  Google Scholar 

  • Levicán G, Bruscella P, Guacunano M, Inostroza C, Bonnefoy V, Holmes DS et al (2002) Characterization of the petI and res operons of Acidithiobacillus ferrooxidans. J Bacteriol 184:1498–1501

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Liu Z, Meng D, Liu X, Li X, Zhang M et al (2019) Comparative genomic analysis reveals the distribution, organization, and evolution of metal resistance genes in the genus Acidithiobacillus. Appl Environ Microbiol 85:e02153-18

  • Lin YF, Walmsley AR, Rosen BP (2006) An arsenic metallochaperone for an arsenic detoxification pump. Proc Natl Acad Sci USA 103:15617–15622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Li Q, Zhang Y, Yang Y, Xu B, Jiang T (2019) Formation process of the passivating products from arsenopyrite bioleaching by Acidithiobacillus ferrooxidans in 9K culture medium. Metals 9:1320

    Article  CAS  Google Scholar 

  • Loftin IR, Blackburn NJ, McEvoy MM (2009) Tryptophan Cu (I)–π interaction fine-tunes the metal binding properties of the bacterial metallochaperone CusF. J Biol Inorg Chem 14:905–912

    Article  CAS  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma L, Wang H, Wu J, Wang Y, Zhang D, Liu X (2019) Metatranscriptomics reveals microbial adaptation and resistance to extreme environment coupling with bioleaching performance. Biores Technol 280:9–17

    Article  CAS  Google Scholar 

  • Mangold S, Valdes J, Holmes DS, Dopson M (2011) Sulfur metabolism in the extreme acidophile Acidithiobacillus caldus. Front Microbiol 2:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Márquez MA, Ospina JD, Morales AL (2012) New insights about the bacterial oxidation of arsenopyrite: a mineralogical scope. Min Engin 39:248–254

    Article  CAS  Google Scholar 

  • Mo H, Chen Q, Du J, Tang L, Qin F, Miao B et al (2011) Ferric reductase activity of the ArsH protein from Acidithiobacillus ferrooxidans. J Microbiol Biotechn 21:464–469

    Article  CAS  Google Scholar 

  • Natarajan KA (2019) Biotechnology for environmentally benign gold production. In: Pogaku R (ed) Horizons in bioprocess engineering. Springer, Cham, pp 263–299

    Chapter  Google Scholar 

  • Navarro CA, von Bernath D, Jerez CA (2013) Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation. Biol Res 46:363–371

    Article  PubMed  Google Scholar 

  • Norris PR, Falagán C, Moya-Beltrán A, Castro M, Quatrini R, Johnson DB (2020) Acidithiobacillus ferrianus sp. nov.: an ancestral extremely acidophilic and facultatively anaerobic chemolithoautotroph. Extremophiles 24:329–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orell A, Navarro CA, Rivero M, Aguilar JS, Jerez CA (2012) Inorganic polyphosphates in extremophiles and their possible functions. Extremophiles 16:573–583

    Article  CAS  PubMed  Google Scholar 

  • Páez-Espino AD, Durante-Rodríguez G, de Lorenzo V (2015) Functional coexistence of twin arsenic resistance systems in Pseudomonas putida KT 2440. Environ Microbiol 17:229–238

    Article  PubMed  CAS  Google Scholar 

  • Páez-Espino AD, Nikel PI, Chavarría M, de Lorenzo V (2020) ArsH protects Pseudomonas putida from oxidative damage caused by exposure to arsenic. Environ Microbiol 22:2230–2242

    Article  PubMed  CAS  Google Scholar 

  • Ponce JS, Moinier D, Byrne D, Amouric A, Bonnefoy V (2012) Acidithiobacillus ferrooxidans oxidizes ferrous iron before sulfur likely through transcriptional regulation by the global redox responding RegBA signal transducing system. Hydrometallurgy 127:187–194

    Article  CAS  Google Scholar 

  • Quatrini R, Appia-Ayme C, Denis Y, Jedlicki E, Holmes DS, Bonnefoy V (2009) Extending the models for iron and sulfur oxidation in the extreme acidophile Acidithiobacillus ferrooxidans. BMC Genomics 10:394

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rawlings D, Johnson DB (2007) The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153:315–324

    Article  CAS  PubMed  Google Scholar 

  • Renner LD, Weibel DB (2011) Physicochemical regulation of biofilm formation. MRS Bull 36:347–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson MD, Oshlack A (2010) A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol 11:1–9

    Article  Google Scholar 

  • Rosen BP (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Romero MA, Cota I, Casadesús J (2015) DNA methylation in bacteria: from the methyl group to the methylome. Curr Opin Microbiol 25:9–16

    Article  PubMed  CAS  Google Scholar 

  • Silverman MP, Lundgren DG (1959) Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidans: I. An improved medium and a harvesting procedure for securing high cell yields. J Bacteriol 77:642–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slonczewski JL, Fujisawa M, Dopson M, Krulwich TA (2009) Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Adv Microb Physiol 55:1–79

    Article  PubMed  CAS  Google Scholar 

  • Tuffin M, de Groot P, Deane SM, Rawlings DE (2004) Multiple sets of arsenic resistance genes are present within highly arsenic-resistant industrial strains of the biomining bacterium, Acidithiobacillus caldus. Int Cong Ser 1275:165–172 (Elsevier)

    Article  CAS  Google Scholar 

  • Tuffin IM, de Groot P, Deane SM, Rawlings DE (2005) An unusual Tn21-like transposon containing an ars operon is present in highly arsenic-resistant strains of the biomining bacterium Acidithiobacillus caldus. Microbiology 151:3027–3039

    Article  CAS  PubMed  Google Scholar 

  • Tuffin IM, Hector SB, Deane SM, Rawlings DE (2006) Resistance determinants of a highly arsenic-resistant strain of Leptospirillum ferriphilum isolated from a commercial biooxidation tank. Appl Environ Microbiol 72:2247–2253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulloa G, Quezada CP, Araneda M, Escobar B, Fuentes E, Álvarez SA et al (2018) Phosphate favors the biosynthesis of CdS quantum dots in Acidithiobacillus thiooxidans ATCC 19703 by improving metal uptake and tolerance. Front Microbiol 9:234

    Article  PubMed  PubMed Central  Google Scholar 

  • Valdés J, Pedroso I, Quatrini R, Dodson RJ, Tettelin H, Blake R et al (2008a) Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics 9:597

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Valdés J, Pedroso I, Quatrini R, Holmes DS (2008b) Comparative genome analysis of Acidithiobacillus ferrooxidans, A. thiooxidans and A. caldus: insights into their metabolism and ecophysiology. Hydrometallurgy 94:180–184

    Article  CAS  Google Scholar 

  • Vera M, Guiliani N, Jerez CA (2003) Proteomic and genomic analysis of the phosphate starvation response of Acidithiobacillus ferrooxidans. Hydrometallurgy 71:125–132

    Article  CAS  Google Scholar 

  • Vera M, Krok B, Bellenberg S, Sand W, Poetsch A (2013) Shotgun proteomics study of early biofilm formation process of Acidithiobacillus ferrooxidans ATCC 23270 on pyrite. Proteomics 13:1133–1144

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Liu S, Liu X, Li X, Wen Q, Lin J (2014) Identification and characterization of an ETHE1-like sulfur dioxygenase in extremely acidophilic Acidithiobacillus spp. Appl Microbiol Biotechnol 98:7511–7522

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Lin JQ, Liu XM, Pang X, Zhang CJ, Yang CL et al (2019) Sulfur oxidation in the acidophilic autotrophic Acidithiobacillus spp. Front Microbiol 9:3290

    Article  PubMed  PubMed Central  Google Scholar 

  • Watling H (2016) Microbiological advances in biohydrometallurgy. Minerals 6:49

    Article  CAS  Google Scholar 

  • Watling H, Watkin ELJ, Ralph DE (2010) The resilience and versatility of acidophiles that contribute to the bio-assisted extraction of metals from mineral sulphides. Environ Technol 31:915–933

    Article  CAS  Google Scholar 

  • Yang HC, Fu HL, Lin YF, Rosen B (2012) Pathways of arsenic uptake and efflux. Curr Top Membr 69:325–358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin H, Zhang X, Li X, He Z, Liang Y, Guo X et al (2014) Whole-genome sequencing reveals novel insights into sulfur oxidation in the extremophile Acidithiobacillus thiooxidans. BMC Microbiol 14:179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang S, Yan L, Xing W, Chen P, Zhang Y, Wang W (2018) Acidithiobacillus ferrooxidans and its potential application. Extremophiles 22:563–579

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Universidad Nacional de Colombia through the program for strengthening research, creation and innovation 2016-2018 (QUIPU: 201010013078), by Colombian Ministry of Science, Technology and Innovation (former Colciencias), program 647 for the formation of high-level human resource. The authors thank Sören Bellenberg for constructive comments on the manuscript, Stephanie Turner for help during the preparation of the RNA and biooxidation samples, and Horacio Calle for kindly providing the ore sample. The authors acknowledge support from Science for Life Laboratory and the National Genomics Infrastructure for providing assistance in massive parallel sequencing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dolly Montoya.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The handling and use of genetic material from the Colombian strains were conducted according to legislative guidelines of the Colombian Agency of Environmental Licenses (ANLA), in the frame of the project RGE 0152-18 linked to the access to genetic resources contract No. 121 dated 22/Ene/16.

Additional information

Communicated by A. Oren.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barragán, C.E., Márquez, M.A., Dopson, M. et al. RNA transcript response by an Acidithiobacillus spp. mixed culture reveals adaptations to growth on arsenopyrite. Extremophiles 25, 143–158 (2021). https://doi.org/10.1007/s00792-021-01217-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-021-01217-0

Keywords

Navigation