Skip to main content
Log in

Immunolocalization of water channel aquaporins in human knee articular cartilage with intact and early degenerative regions

  • Original Paper
  • Published:
Medical Molecular Morphology Aims and scope Submit manuscript

Abstract

Aquaporins (AQPs), a family of water channel proteins expressed in various cells and tissues, serve as physiological pathways of water and small solute transport. Articular cartilage is avascular tissue with unique biomechanical structure, a major component of which is “water”. Our objective is to investigate the immunolocalization and expression pattern changes of AQPs in articular cartilage with normal and early degenerative regions in the human knee joint, which is the joint most commonly involved in osteoarthritis (OA). Two isoforms (AQPs 1 and 3) of AQPs were examined by immunohistochemical analyses using isoform-specific antibodies with cartilage samples from OA patients undergoing total knee arthroplasty. AQP 1 and AQP 3 were expressed in human knee articular cartilage and were localized in chondrocytes, both in the intact and early degenerative cartilage regions. Compared to the intact cartilage, both AQP 1 and AQP 3 immunopositive cells were observed at the damaged surface area in the degenerative region. These findings suggest that these AQPs play roles in metabolic water regulation in articular cartilage of load bearing joints and that they are responsible for OA onset.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agre P, King LS, Yasui M, Guggino WB, Ottersen OP, Fujiyoshi Y, Engel A, Nielsen S (2002) Aquaporin water channels—from atomic structure to clinical medicine. J Physiol 542:3–16

    Article  PubMed  CAS  Google Scholar 

  2. Morishita Y, Sakube Y, Sasaki S, Ishibashi K (2004) Molecular mechanisms and drug development in aquaporin water channel diseases: aquaporin superfamily (superaquaporins): expansion of aquaporins restricted to multicellular organisms. J Pharmacol Sci 96:276–279

    Article  PubMed  CAS  Google Scholar 

  3. Takata K, Matsuzaki T, Tajika Y (2004) Aquaporins: water channel proteins of the cell membrane. Prog Histochem Cytochem 39:1–83

    Article  PubMed  CAS  Google Scholar 

  4. Verkman AS (2005) Novel roles of aquaporins revealed by phenotype analysis of knockout mice. Rev Physiol Biochem Pharmacol 155:31–55

    Article  PubMed  CAS  Google Scholar 

  5. Nielsen S, Frokiaer J, Marples D, Kwon TH, Agre P, Knepper MA (2002) Aquaporins in the kidney: from molecules to medicine. Physiol Rev 82:205–244

    PubMed  CAS  Google Scholar 

  6. Morishita Y, Matsuzaki T, Hara-chikuma M, Andoo A, Shimono M, Matsuki A, Kobayashi K, Ikeda M, Yamamoto T, Verkman A, Kusano E, Ookawara S, Takata K, Sasaki S, Ishibashi K (2005) Disruption of aquaporin-11 produces polycystic kidneys following vacuolization of the proximal tubule. Mol Cell Biol 25:7770–7779

    Article  PubMed  CAS  Google Scholar 

  7. Kuettner KE, Aydelotte MB, Thonar EJ-MA (1991) Articular cartilage matrix and structure: a minireview. J Rheumatol 18:46–47

    Google Scholar 

  8. Mobasheri A, Marples D (2004) Expression of AQP-1 water channel in normal human tissues: a semiquantitative study using tissue microarray technology. Am J Physiol Cell Physiol 286:C529–C537

    Article  PubMed  CAS  Google Scholar 

  9. Trujillo E, Gonzalez T, Marin R, Martin-Vasallo P, Marples D, Mobasheri A (2004) Human articular chondrocytes, synoviocytes and synovial microvessels express aquaporin water channels; upregulation of AQP1 in rheumatoid arthritis. Histol Histopathol 19:435–444

    PubMed  CAS  Google Scholar 

  10. Mobasheri A, Wray S, Marples D (2005) Distribution of AQP2 and AQP3 water channels in human tissue microarrays. J Mol Histol 36:1–14

    Article  PubMed  CAS  Google Scholar 

  11. Matsuzaki T, Suzuki T, Koyama H, Tanaka S, Takata K (1999) Water channel protein AQP3 is present in epithelia exposed to the environment of possible water loss. J Histochem Cytochem 47:1275–1286

    Article  PubMed  CAS  Google Scholar 

  12. Matsuzaki T, Machida N, Tajika Y, Ablimit A, Suzuki T, Aoki T, Hagiwara H, Takata K (2005) Expression and immunolocalization of water-channel aquaporins in the rat and mouse mammary gland. Histochem Cell Biol 123:501–512

    Article  PubMed  CAS  Google Scholar 

  13. Tajika Y, Matsuzaki T, Suzuki T, Aoki T, Hagiwara H, Tanaka S, Kominami E, Takata K (2002) Immunohistochemical characterization of the intracellular pool of water channel aquaporin-2 in the rat kidney. Anat Sci Int 77:189–195

    Article  PubMed  Google Scholar 

  14. Pritzker KPH, in: Brandt KD, Doherty M, Lohmander LS (1998) Osteoarthritis, Oxford University Press, New York, pp 50–61

  15. Agre P, Saboori AM, Asimos A, Smith BL (1987) Purification and partial characterization of the Mr 30,000 integral membrane protein associated with the erythrocyte Rh(D) antigen. J Biol Chem 262:17497–17503

    PubMed  CAS  Google Scholar 

  16. Denker BM, Smith BL, Kuhajda FP, Agre P (1988) Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem 263:15634–15642

    PubMed  CAS  Google Scholar 

  17. Agre P, Preston GM, Smith BL, Jung JS, Raina S, Moon C, Guggino WB, Nielsen S (1993) Aquaporin CHIP: the archetypal molecular water channel. Am J Physiol 265:F463–F476

    PubMed  CAS  Google Scholar 

  18. Ishibashi K, Sasaki S, Fushimi K, Uchida S, Kuwahara M, Saito H, Furukawa T, Nakajima K, Yamaguchi Y, Gojobori T (1994) Molecular cloning and expression of a member of the aquaporin family with permeability to glycerol and urea in addition to water expressed at the basolateral membrane of kidney collecting duct cells. Proc Natl Acad Sci USA 91:6269–6273

    Article  PubMed  CAS  Google Scholar 

  19. Echevarria M, Windhager EE, Frindt G (1996) Selectivity of the renal collecting duct water channel aquaporin-3. J Biol Chem 271:25079–25082

    Article  PubMed  CAS  Google Scholar 

  20. Hara-Chikuma M, Verkman AS (2008) Aquaporin-3 facilitates epidermal cell migration and proliferation during wound healing. J Mol Med 86:221–231

    Article  PubMed  CAS  Google Scholar 

  21. Engel A, Stahlberg H (2002) Aquaglyceroporins: channel proteins with a conserved core, multiple functions, and variable surfaces. Int Rev Cytol 215:75–104

    Article  PubMed  CAS  Google Scholar 

  22. Umenishi F, Verkman AS, Gropper MA (1996) Quantitative analysis of aquaporin mRNA expression in rat tissues by RNase protection assay. DNA Cell Biol 15:475–480

    Article  PubMed  CAS  Google Scholar 

  23. Matsuzaki T, Suzuki T, Takata K (2001) Hypertonicity-induced expression of aquaporin 3 in MDCK cells. Am J Physiol Cell Physiol 281:55–63

    Google Scholar 

  24. Wakayama Y, Jimi T, Inoue M, Kojima H, Shibuya S, Murahashi M, Hara H, Oniki H (2002) Expression of aquaporin 3 and its localization in normal skeletal myofibres. Histochem J 34:331–337

    Article  PubMed  CAS  Google Scholar 

  25. Wang W, Hart PS, Piesco NP, Lu X, Gorry MC, Hart TC (2003) Aquaporin expression in developing human teeth and selected orofacial tissues. Calcif Tissue Int 72:222–227

    Article  PubMed  CAS  Google Scholar 

  26. Guilak F (2000) The deformation behavior and viscoelastic properties of chondrocytes in articular cartilage. Biorheology 37:27–44

    PubMed  CAS  Google Scholar 

  27. Guilak F, Ratcliffe A, Mow VC (1995) Chondrocyte deformation and local tissue strain in articular cartilage: a confocal microscopy study. J Orthop Res 13:410–421

    Article  PubMed  CAS  Google Scholar 

  28. Guilak F, Erickson GR, Ting-Beall HP (2002) The effects of osmotic stress on the viscoelastic and physical properties of articular chondrocytes. Biophys J 82:720–727

    Article  PubMed  CAS  Google Scholar 

  29. Lang F, Busch GL, Ritter M, Völkl H, Waldegger S, Gulbins E, Häussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78:247–306

    PubMed  CAS  Google Scholar 

  30. Mobasheri A, Mobasheri R, Francis MJ, Trujillo E, Alvarez de la Rosa D, Martin-Vasallo P (1998) Ion transport in chondrocytes: membrane transporters involved in intracellular ion homeostasis and the regulation of cell volume, free [Ca2+] and pH. Histol Histopathol 13:893–910

    Google Scholar 

  31. Geyer M, Grässel S, Straub RH, Schett G, Dinser R, Grifka J, Gay S, Neumann E, Müller-Ladner U (2009) Differential transcriptome analysis of intraarticular lesional vs. intact cartilage reveals new candidate genes in osteoarthritis pathophysiology. Osteoarthritis Cartilage 17:328–335

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. Hiroe Miyahata from Gunma University Graduate School of Medicine for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Shinozaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hagiwara, K., Shinozaki, T., Matsuzaki, T. et al. Immunolocalization of water channel aquaporins in human knee articular cartilage with intact and early degenerative regions. Med Mol Morphol 46, 104–108 (2013). https://doi.org/10.1007/s00795-013-0014-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00795-013-0014-3

Keywords

Navigation