Skip to main content
Log in

Halogen bonding: the σ-hole

Proceedings of “Modeling interactions in biomolecules II”, Prague, September 5th–9th, 2005

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Halogen bonding refers to the non-covalent interactions of halogen atoms X in some molecules, RX, with negative sites on others. It can be explained by the presence of a region of positive electrostatic potential, the σ-hole, on the outermost portion of the halogen’s surface, centered on the R–X axis. We have carried out a natural bond order B3LYP analysis of the molecules CF3X, with X = F, Cl, Br and I. It shows that the Cl, Br and I atoms in these molecules closely approximate the \(s^{2} p^{2}_{x} p^{2}_{y} p^{1}_{z} \) configuration, where the z-axis is along the R–X bond. The three unshared pairs of electrons produce a belt of negative electrostatic potential around the central part of X, leaving the outermost region positive, the σ-hole. This is not found in the case of fluorine, for which the combination of its high electronegativity plus significant sp-hybridization causes an influx of electronic charge that neutralizes the σ-hole. These factors become progressively less important in proceeding to Cl, Br and I, and their effects are also counteracted by the presence of electron-withdrawing substituents in the remainder of the molecule. Thus a σ-hole is observed for the Cl in CF3Cl, but not in CH3Cl.

Schematic representation of the atomic charge generation. The molecular electrostatic potential (MEP) is calculated using the AM1* Hamiltonian. The semiempirical MEP is then scaled to DFT or ab initio level and atomic charges are generated from it by the restrained electrostatic potential (RESP) fit method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dumas J-M, Peurichard H, Gomel M (1978) J Chem Res Synop 54–55

  2. Dumas J-M, Geron C, Peurichard H, Gomel M (1976) Bull Soc Chim France 720–728

  3. Dumas J-M, Kern M, Janier-Dubry JL (1976) Bull Soc Chim France 1785–1790

  4. Murray-Rust P, Motherwell WDS (1979) J Am Chem Soc 101:4374–4376

    Article  CAS  Google Scholar 

  5. Murray-Rust P, Stallings WC, Monti CT, Preston RK, Glusker JP (1983) J Am Chem Soc 105:3206–3214

    Article  CAS  Google Scholar 

  6. Ramasubbu N, Parthasarathy R, Murray-Rust P (1986) J Am Chem Soc 108:4308–4314

    Article  CAS  Google Scholar 

  7. Bent HA (1968) Chem Rev 68:587–648

    Article  CAS  Google Scholar 

  8. Hassel O (1970) Science 170:497–502

    Article  CAS  Google Scholar 

  9. Bernard-Houplain M-C, Sandorfy C (1973) Can J Chem 51:1075–1082

    Article  CAS  Google Scholar 

  10. Bernard-Houplain M-C, Sandorfy C (1973) Can J Chem 51:3640–3646

    Article  CAS  Google Scholar 

  11. Di Paolo T, Sandorfy (1974) Chem Phys Lett 26:466–469

    Article  Google Scholar 

  12. Di Paolo T, Sandorfy C (1974) Can J Chem 52:3612–3622

    Article  Google Scholar 

  13. Auffinger P, Hays FA, Westhof E, Shing Ho P (2004) Proc Nat Acad Sci 101:16789–16794

    Article  CAS  Google Scholar 

  14. Metrangolo P, Neukirch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395

    Article  CAS  Google Scholar 

  15. Brinck T, Murray JS, Politzer P (1992) Int J Quantum Chem, Quantum Biol Symp 19:57–64

    Article  CAS  Google Scholar 

  16. Murray JS, Paulsen K, Politzer P (1994) Proc Indian Acad Sci (Chem Sci) 106:267–275

    CAS  Google Scholar 

  17. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2006) J Mol Model DOI 10.1007/s00894-006-0154-7 (this issue)

  18. Stewart RF (1972) J Chem Phys 57:1664–1668

    Article  CAS  Google Scholar 

  19. Naray-Szabo G, Ferenczy GG (1995) Chem Rev 95:829–847

    Article  CAS  Google Scholar 

  20. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979

    Article  CAS  Google Scholar 

  21. Weinstein H, Politzer P, Srebrenik S (1975) Theor Chim Acta 38:159–163

    Article  CAS  Google Scholar 

  22. Politzer P, Murray JS (2002) Theor Chem Accts 108:134–142

    CAS  Google Scholar 

  23. Flükiger PF (1992) Development of the molecular graphics package MOLEKEL and its application to selected problems in organic and organometallic chemistry. Thèse No. 2561. Département de chimie physique, Université de Genève, Genève

  24. Portmann S, Lüthi HP (2000) CHIMIA 54:766–770; http://www.cscs.ch/molekel/index.html

    CAS  Google Scholar 

  25. Lommerse JPM, Stone AJ, Taylor R, Allen FH (1996) J Am Chem Soc 118:3108–3116

    Article  CAS  Google Scholar 

  26. Valerio G, Raos G, Meille SV, Metrangolo P, Resnati G (2000) J Phys Chem A 104:1617–1620

    Article  CAS  Google Scholar 

  27. Romaniello P, Lelj F (2002) J Phys Chem A 106:9114–9119

    Article  CAS  Google Scholar 

  28. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  29. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  30. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  31. Ditchfield R, Hehre WJ, Pople JA (1971) J Chem Phys 54:724–728

    Article  CAS  Google Scholar 

  32. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261

    Article  CAS  Google Scholar 

  33. Hariharan PC, Pople JA (1974) Mol Phys 27:209–214

    Article  CAS  Google Scholar 

  34. Gordon MS (1980) Chem Phys Lett 76:163–168

    Article  CAS  Google Scholar 

  35. Hariharan PC, Pople JA (1973) Theo Chim Acta 28:213–222

    Article  CAS  Google Scholar 

  36. Blaudeau J-P, McGrath MP, Curtiss LA, Radom L (1997) J Chem Phys 107:5016–5021

    Article  CAS  Google Scholar 

  37. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, DeFrees DJ, Pople JA, Gordon MS (1982) J Chem Phys 77:3654–3665

    Article  CAS  Google Scholar 

  38. Binning RC Jr, Curtiss LA (1990) J Comp Chem 11:1206–1216

    Article  CAS  Google Scholar 

  39. Rassolov VA, Pople JA, Ratner MA, Windus TL (1998) J Chem Phys 109:1223–1229

    Article  CAS  Google Scholar 

  40. Rassolov A, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) J Comp Chem 22:976–984

    Article  CAS  Google Scholar 

  41. Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PvR (1983) J Comp Chem 4:294–301

    Article  CAS  Google Scholar 

  42. Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Can J Chem 70:560–571

    Article  CAS  Google Scholar 

  43. Sosa C, Andzelm J, Elkin BC, Wimmer E, Dobbs KD, Dixon DA (1992) J Phys Chem 96:6630–6636

    Article  CAS  Google Scholar 

  44. Kutzelnigg W (1984) Angew Chem 96:262–286

    CAS  Google Scholar 

  45. Kutzelnigg W (1984) Angew Chem Int Ed Engl 23:272–295

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clark, T., Hennemann, M., Murray, J.S. et al. Halogen bonding: the σ-hole. J Mol Model 13, 291–296 (2007). https://doi.org/10.1007/s00894-006-0130-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-006-0130-2

Keywords

Navigation