Skip to main content
Log in

Comparison of the electronic properties, and thermodynamic and kinetic parameters of the aquation of selected platinum(II) derivatives with their anticancer IC50 indexes

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Three potential anticancer agents {trans-[PtCl2(NH3)(thiazole)], cis-[PtCl2(NH3)(piperidine)], and PtCl2(NH3)(cyclohexylamine) (JM118)} were explored and compared with cisplatin and the inactive [PtCl(dien)]+ complex. Basic electronic properties, bonding and stabilization energies were determined, and thermodynamic and kinetic parameters for the aquation reaction were estimated at the B3LYP/6-311++G(2df,2pd) level of theory. Since the aquation process represents activation of these agents, the obtained rate constants were compared with the experimental IC50 values for several tumor cells. Despite the fact that the processes in which these drugs are involved and the way in which they affect cells are very complex, some correlations can be deduced.

Aquation energy profile for the family of cisplatin derivatives (JM118)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rosenberg B, Van Camp L, Trosko JL, Mansour VH (1969) Nature 222:385–391

    Article  CAS  Google Scholar 

  2. Farrell N, Povirk LF, Dange Y, DeMasters G, Gupta MS, Kohlhagen G, Khan QA, Pommier Y, Gewirtz DA (2004) Biochem Pharmacol 68:857–866

    Article  CAS  Google Scholar 

  3. Beljanski V, Villanueva JM, Doetsch PW, Natile G, Marzilli LG (2005) J Am Chem Soc 127:15833–15842

    Article  CAS  Google Scholar 

  4. Wosikowski K, Lamphere L, Unteregger G, Jung V, Kaplan F, Xu JP, Rattel B, Caligiuri M (2007) Cancer Chemother Pharmacol 60:589–600

    Article  CAS  Google Scholar 

  5. Najajreh Y, Kasparkova J, Marini V, Gibson D, Brabec V (2005) J Biol Inorg Chem 10:722–731

    Article  CAS  Google Scholar 

  6. Marini V, Christofis P, Novakova O, Kasparkova J, Farrell N, Brabec V (2005) Nucleic Acids Res 33:5819–5828

    Article  CAS  Google Scholar 

  7. Giannikopoulos G, Teo C-L, Hall MD, Fenton RR, Hambley TW (2003) Aust J Chem 56:685–689

    Article  CAS  Google Scholar 

  8. Bhattacharyya D, Marzilli PA, Marzilli LG (2005) Inorg Chem 44:7644–7651

    Article  CAS  Google Scholar 

  9. Malina J, Voitiskova M, Brabec V, Diakos CI, Hambley TW (2005) Biochem Biophys Res Commun 332:1034–1041

    Article  CAS  Google Scholar 

  10. Brabec V, Kasparkova J (2005) Drug Resist Updat 8:131–146

    Article  CAS  Google Scholar 

  11. Bivian-Castro EY, Roitzsch M, Gupta D, Lippert B (2005) Inorg Chim Acta 358:2395–2402

    Article  CAS  Google Scholar 

  12. Carlone M, Marzilli LG, Natile G (2005) Eur J Inorg Chem 1264–1273

  13. Barnes KR, Lippard SJ (2004) Cisplatin and related anticancer drugs: recent advances and insights. In: Sigel A, Sigel H, Sigel R (eds) Metal ions in biological systems, vol 42: Metal complexes in tumor diagnosis and as anticancer agents. Routledge, New York, pp 143–177

  14. Huq F, Yu JQ, Daghriri H, Beale P (2004) J Inorg Biochem 98:1261–1270

    Article  CAS  Google Scholar 

  15. Kaim W, Schwederski B (1994) Bioinorganic chemistry: inorganic elements in the chemistry of life. Wiley, Chichester

  16. Takahara PM, Rosenzweig AC, Frederick CA, Lippard SJ (1995) Nature 377:649–655

    Article  CAS  Google Scholar 

  17. Takahara PM, Frederick CA, Lippard SJ (1996) J Am Chem Soc 118:12309–12321

    Article  CAS  Google Scholar 

  18. Yang D, van Boom SSGE, Reedijk J, van Boom JH, Wang AH-J (1995) Biochemistry 34:12912–12921

    Article  CAS  Google Scholar 

  19. Gelasco A, Lippard SJ (1998) Biochemistry 37:9230–9238

    Article  CAS  Google Scholar 

  20. Dunham SU, Dunham SU, Turner CJ, Lippard SJ (1998) J Am Chem Soc 120:5395–5403

    Article  CAS  Google Scholar 

  21. Wing RM, Pjura P, Drew HR, Dickerson RE (1984) EMBO J 3:1201–1212

    CAS  Google Scholar 

  22. Lilley DMJ (1996) J Biol Inorg Chem 1:189–191

    Article  CAS  Google Scholar 

  23. Coste F, Malinge JM, Serre L, Shepard W, Roth M, Leng M, Zelwer C (1999) Nucleic Acids Res 27:1837–1845

    Article  CAS  Google Scholar 

  24. Spingler B, Whittington DA, Lippard SJ (2001) Inorg Chem 40:5596–5602

    Article  CAS  Google Scholar 

  25. Silverman AP, Bu W, Cohen SM, Lippard SJ (2002) J Biol Chem 277:49743–49754

    Article  CAS  Google Scholar 

  26. Parkinson GN, Arvanitis GM, Lessinger L, Ginell SL, Jones R, Gaffney B, Berman HM (1995) Biochemistry 34:15487–15495

    Article  CAS  Google Scholar 

  27. Ohndorf U-M, Rould MA, He Q, Pabo CO, Lippard SJ (1999) Nature 399:708–712

    Article  CAS  Google Scholar 

  28. Jamieson ER, Lippard SJ (1999) Chem Rev 99:2467–2498

    Article  CAS  Google Scholar 

  29. Sigel H, Song B, Oswald G, Lippert B (1998) Chem Eur J 4:1053–1060

    Article  CAS  Google Scholar 

  30. Williams KM, Scarcia T, Natile G, Marzilli LG (2001) Inorg Chem 40:445–454

    Article  CAS  Google Scholar 

  31. Pantojaa E, Gallipolia A, van Zutphena S, Tookeb DM, Spekb AL, Navarro-Ranningerc C, Reedijk J (2006) Inorg Chim Acta 359:4335–4342

    Article  Google Scholar 

  32. Kašparková J, Mackay FS, Brabec V, Sadler PJ (2003) J Biol Inorg Chem 8:741–745

    Article  Google Scholar 

  33. Choi S, Delaney S, Orbai L, Padgett EJ, Hakemian AS (2001) Inorg Chem 40:5481–5482

    Article  CAS  Google Scholar 

  34. Junicke H, Bruhn C, Kluge R, Serianni AS, Steinborn D (1999) J Am Chem Soc 121:6232–6241

    Article  CAS  Google Scholar 

  35. Song R, Kim KM, Lee SS, Sohn YS (2000) Inorg Chem 39:3567–3571

    Article  CAS  Google Scholar 

  36. Watanabe M, Kai M, Asanuma S, Yoshikane M, Horiuchi A, Ogasawara A, Watanabe T, Mikami T, Matsumoto T (2001) Inorg Chem 40:1496–1500

    Article  Google Scholar 

  37. Kelland LR, Jones MM, Abel G, Harrap KR (1992) Cancer Chemother Pharmacol 30:43–50

    Article  CAS  Google Scholar 

  38. Choi S, Cooley RB, Voutchkova A, Leung CH, Vastag L, Knowles DE (2005) J Am Chem Soc 127:1773–1781

    Article  CAS  Google Scholar 

  39. Dal Peraro M, Ruggerone P, Raugei S, Gervasi FL, Carloni P (2007) Curr Opin Struct Biol 17:149–156

    Article  Google Scholar 

  40. Baik M-H, Friesner RA, Lippard SJ (2002) J Am Chem Soc 124:4495–4503

    Article  CAS  Google Scholar 

  41. Baik MH, Friesner RA, Lippard SJ (2003) J Am Chem Soc 125:14082–14092

    Article  CAS  Google Scholar 

  42. Raber J, Zhu C, Eriksson LA (2005) J Phys Chem 109:11006–11015

    CAS  Google Scholar 

  43. Chval Z, Šíp M (2003) Coll Czech Chem Commun 68:1105–1118

    Article  CAS  Google Scholar 

  44. Dos Santos HF, Marcial BL, De Miranda CF, Costa LAS, De Almeida WB (2006) J Inorg Biochem 100:1594–1605

    Article  Google Scholar 

  45. Lopes JF, Menezes VSD, Duarte HA, Rocha WR, De Almeida WB, Dos Santos HF (2006) J Phys Chem B 110:12047–12054

    Article  CAS  Google Scholar 

  46. Costa LA, Hambley TW, Rocha WR, Almeida WB, Dos Santos HF (2006) Int J Quantum Chem 106:2129–2144

    Article  CAS  Google Scholar 

  47. Burda JV, Leszczynski J (2003) Inorg Chem 42:7162–7172

    Article  CAS  Google Scholar 

  48. Burda JV, Šponer J, Hrabáková J, Zeizinger M, Leszczynski J (2003) J Phys Chem B 107:5349–5356

    Article  CAS  Google Scholar 

  49. Zeizinger M, Burda JV, Leszczynski J (2004) Phys Chem Chem Phys 6:3585–3590

    Article  CAS  Google Scholar 

  50. Pavelka M, Burda JV (2007) J Mol Model 13:367–379

    Article  CAS  Google Scholar 

  51. Chang GR, Zhou LX, Chen D (2006) Chin J Struct Chem 25:533–542

    CAS  Google Scholar 

  52. Matsui T, Shigeta Y, Hirao K (2006) Chem Phys Lett 423:331–334

    Article  CAS  Google Scholar 

  53. Robertazzi A, Platts JA (2006) Chem Eur J 12:5747–5756

    Article  CAS  Google Scholar 

  54. Wysokinski R, Hernik K, Szostak R, Michalska D (2007) Chem Phys 333:37–48

    Article  CAS  Google Scholar 

  55. Yuan QH, Zhou LX (2007) Chin J Struct Chem 26:962–972

    CAS  Google Scholar 

  56. Deubel DV (2002) J Am Chem Soc 124:5834–5842

    Article  CAS  Google Scholar 

  57. Burda JV, Zeizinger M, Šponer J, Leszczynski J (2000) J Chem Phys 113:2224–2232

    Article  CAS  Google Scholar 

  58. Zeizinger M, Burda JV, Šponer J, Kapsa V, Leszczynski J (2001) J Phys Chem A 105:8086–8092

    Article  CAS  Google Scholar 

  59. Burda JV, Zeizinger M, Leszczynski J (2004) J Chem Phys 120:1253–1262

    Article  CAS  Google Scholar 

  60. Burda JV, Zeizinger M, Leszczynski J (2005) J Comput Chem 29:907–914

    Article  Google Scholar 

  61. Zimmermann T, Zeizinger M, Burda JV (2005) J Inorg Biochem 99:2184–2196

    Article  CAS  Google Scholar 

  62. Erturk H, Hofmann A, Puchta R, van Eldik R (2007) Dalton Trans 2007:2295–2301

  63. Hao L, Zhang Y, Tan HW, Chen GJ (2007) Chem J Chin Univ Chin 28:1160–1164

    CAS  Google Scholar 

  64. Pavelka M, Lucas MFA, Russo N (2007) Chem Eur J 13(36):10108–10116

    Google Scholar 

  65. Hofmann A, Jaganyi D, Munro OQ, Liehr G, van Eldik R (2003) Inorg Chem 42:1688–1700

    Article  CAS  Google Scholar 

  66. Cooper J, Ziegler T (2002) Inorg Chem 41:6614–6622

    Article  CAS  Google Scholar 

  67. Zhu HJ, Ziegler T (2006) J Organometallic Chem 691:4486–4497

    Article  CAS  Google Scholar 

  68. Tsipis AC, Sigalas MP (2002) J Mol Struct (Theochem) 584:235–248

    CAS  Google Scholar 

  69. Zhu C, Raber J, Eriksson LA (2005) J Phys Chem B 109:12195–12205

    Article  CAS  Google Scholar 

  70. Song T, Hu P (2006) J Chem Phys 125:091101

    Article  Google Scholar 

  71. Jia M, Qu W, Yang Z, Chen G (2005) Int J Modern Phys B 19:2939–2949

    Article  CAS  Google Scholar 

  72. Robertazzi A, Platts JA (2004) J Comput Chem 25:1060–1067

    Article  CAS  Google Scholar 

  73. Robertazzi A, Platts JA (2005) Inorg Chem 44:267–274

    Article  CAS  Google Scholar 

  74. Zhang Y, Guo Z, You X-Z (2001) J Am Chem Soc 123:9378–9387

    Article  CAS  Google Scholar 

  75. Lau JKC, Deubel DV (2006) J Chem Theor Comput 2:103–106

    Article  CAS  Google Scholar 

  76. Andrae D, Haussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–141

    Article  CAS  Google Scholar 

  77. Bergner A, Dolg M, Kuechle W, Stoll H, Preuss H (1993) Mol Phys 80:1431

    Article  CAS  Google Scholar 

  78. Smedarchina Z, Fernández-Ramos A, Siebrand W (2001) J Comput Chem 22:787–801

    Article  CAS  Google Scholar 

  79. Weinhold F (2001) NBO 5.0 Program, University of Wisconsin, Madison, WI

  80. Chval Z, Šíp M, Burda JV (2008) J Comp Chem (in press)

  81. Sharp SY, Rogers PM, Kelland LR (1995) Clinical Cancer Res 1:981–989

    CAS  Google Scholar 

  82. Kasparkova J, Marini V, Najajreh Y, Gibson D, Brabec V (2003) Biochemistry 42:6321–6332

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grant MSM 0021620835. The computational resources from our department supercomputer cluster administrated by Dr. Šimánek should be acknowledged for providing access to excellent computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav V. Burda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradáč, O., Zimmermann, T. & Burda, J.V. Comparison of the electronic properties, and thermodynamic and kinetic parameters of the aquation of selected platinum(II) derivatives with their anticancer IC50 indexes. J Mol Model 14, 705–716 (2008). https://doi.org/10.1007/s00894-008-0285-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0285-0

Keywords

Navigation