Skip to main content
Log in

Expansion of the σ-hole concept

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The term “σ-hole” originally referred to the electron-deficient outer lobe of a half-filled p (or nearly p) orbital involved in forming a covalent bond. If the electron deficiency is sufficient, there can result a region of positive electrostatic potential which can interact attractively (noncovalently) with negative sites on other molecules (σ-hole bonding). The interaction is highly directional, along the extension of the covalent bond giving rise to the σ-hole. σ-Hole bonding has been observed, experimentally and computationally, for many covalently-bonded atoms of Groups V–VII. The positive character of the σ-hole increases in going from the lighter to the heavier (more polarizable) atoms within a Group, and as the remainder of the molecule becomes more electron-withdrawing. In this paper, we show computationally that significantly positive σ-holes, and subsequent noncovalent interactions, can also occur for atoms of Group IV. This observation, together with analogous ones for the molecules (H3C)2SO, (H3C)2SO2 and Cl3PO, demonstrates a need to expand the interpretation of the origins of σ-holes: (1) While the bonding orbital does require considerable p character, in view of the well-established highly directional nature of σ-hole bonding, a sizeable s contribution is not precluded. (2) It is possible for the bonding orbital to be doubly-occupied and forming a coordinate covalent bond.

Two views of the calculated electrostatic potential on the 0.001 au molecular surface of SiCl4. Color ranges, in kcal/mole, are: purple, negative; blue, between 0 and 8; green, between 8 and 11; yellow, between 11 and 18; red, more positive than 18. The top view shows three of the four chlorines. In the center is the σ-hole due to the fourth Cl−Si bond, its most positive portion (red) being on the extension of that bond. In the bottom view are visible two of the σ-holes on the silicon. In both views can be seen the σ-holes on the chlorines, on the extensions of the Si−Cl bonds; their most positive portions are green

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Clark T, Hennemann M, Murray JS, Politzer P (2007) J Mol Model 13:291–296. doi:10.1007/s00894-006-0130-2

    Article  CAS  Google Scholar 

  2. Metrangolo P, Neukirsch H, Pilati T, Resnati G (2005) Acc Chem Res 38:386–395. doi:10.1021/ar0400995

    Article  CAS  Google Scholar 

  3. Metrangolo P, Resnati G (eds) (2008) Halogen Bonding: Fundamentals and Applications, Structure and Bonding No. 126. Springer, Berlin

  4. Politzer P, Lane P, Concha MC, Ma Y, Murray JS (2007) J Mol Model 13:305–311. doi:10.1007/s00894-006-0154-7

    Article  CAS  Google Scholar 

  5. Brinck T, Murray JS, Politzer P (1992) Int J Quantum Chem Quantum Biol Symp 19:57–64. doi:10.1002/qua.560440709

    Article  CAS  Google Scholar 

  6. Murray JS, Paulsen K, Politzer P (1994) Proc Indiana Acad Sci 106:267–275 Chem Sci

    CAS  Google Scholar 

  7. Auffinger P, Hays FA, Westhof E, Shing Ho P (2004) Proc Natl Acad Sci USA 101:16789–16794. doi:10.1073/pnas.0407607101

    Article  CAS  Google Scholar 

  8. Politzer P, Murray JS, Concha MC (2007) J Mol Model 13:643–650. doi:10.1007/s00894-007-0176-9

    Article  CAS  Google Scholar 

  9. Wang Y-H, Lu Y-X, Zou J-W, Yu Q-S (2008) Int J Quantum Chem 108:1083–1089. doi:10.1002/qua.21583

    Article  CAS  Google Scholar 

  10. Riley KE, Murray JS, Concha MC, Politzer P, Hobza P (2008) J Chem Theory Comput (in press)

  11. Murray JS, Lane P, Politzer P (2007) Int J Quantum Chem 107:3046–3052. doi:10.1002/qua.21352

    Article  Google Scholar 

  12. Murray JS, Clark T, Lane P, Politzer P (2007) J Mol Model 13:1033–1038. doi:10.1007/s00894-007-0225-4

    Article  CAS  Google Scholar 

  13. Politzer P, Murray JS (2008) Ann Eur Acad Sci (in press)

  14. Clark T, Murray JS, Lane P, Politzer P (2008) J Mol Model 14:689–697. doi:10.1007/s00894-008-0279-y

    Article  CAS  Google Scholar 

  15. Stewart RF (1979) Chem Phys Lett 65:335–342. doi:10.1016/0009-2614(79)87077-3

    Article  CAS  Google Scholar 

  16. Politzer P, Truhlar DG (eds) (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

  17. Bader RFW, Carroll MT, Cheeseman JR, Chang C (1987) J Am Chem Soc 109:7968–7979. doi:10.1021/ja00260a006

    Article  CAS  Google Scholar 

  18. Murray JS, Politzer P (1998) J Mol Struct THEOCHEM 425:107–114 . doi:10.1016/S0166-1280(97)00162-0

    Article  CAS  Google Scholar 

  19. Politzer P, Murray JS (1999) Trends. Chem Phys 7:157–165

    CAS  Google Scholar 

  20. Politzer P, Murray JS (2001) Fluid Phase Equil 185:129–137. doi:10.1016/S0378-3812(01)00463-0

    Article  CAS  Google Scholar 

  21. Hagelin H, Brinck T, Murray JS, Berthelot M, Politzer P (1995) Can J Chem 73:483–488. doi:10.1139/v95-063

    Article  CAS  Google Scholar 

  22. Grimme S (2006) J Comput Chem 27:1787–1799. doi:10.1002/jcc.20495

    Article  CAS  Google Scholar 

  23. Murray JS, Politzer P (2008) Croat Chem Acta (in press)

  24. Ramasabbu N, Parthasarathy R, Murray-Rust P (1986) J Am Chem Soc 108:4308–4314. doi:10.1021/ja00275a012

    Article  Google Scholar 

  25. Rosenfeld RE Jr, Parthasarathy R, Dunitz JD (1977) J Am Chem Soc 99:4860–4862. doi:10.1021/ja00456a072

    Article  Google Scholar 

  26. Politzer P, Murray JS, Concha MC (2008) J Mol Model 14:659–665. doi:10.1007/s00894-008-0280-5

    Article  CAS  Google Scholar 

  27. Bondi A (1964) J Phys Chem 68:441–451. doi:10.1021/j100785a001

    Article  CAS  Google Scholar 

  28. Ignatyev IS, Schaefer HF III (2001) J Phys Chem A 105:7665–7671. doi:10.1021/jp0104334

    Article  CAS  Google Scholar 

  29. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926. doi:10.1021/cr00088a005

    Article  CAS  Google Scholar 

  30. Olie K (1971) Acta Crystallogr B 27:1459–1460. doi:10.1107/S0567740871004138

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jane S. Murray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murray, J.S., Lane, P. & Politzer, P. Expansion of the σ-hole concept. J Mol Model 15, 723–729 (2009). https://doi.org/10.1007/s00894-008-0386-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-008-0386-9

Keywords

Navigation