Skip to main content
Log in

Adsorption of CO on Cu (110) and (100) surfaces using COSMO-based DFT

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) combined with the conductor-like solvent model (COSMO) can provide valuable atomistic level insights into CO adsorption on Cu surface interactions in liquid paraffin. The objective of this research was to investigate the solvent effect of liquid paraffin. It was found that both structural parameters and relative energies are very sensitive to the COSMO solvent model. Solvent effects can improve the stability of CO adsorption on Cu (110) and (100) surfaces and the extent of CO activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Figueiredo RT, Martinez-Arias A, Granados ML, Fierro JLG (1998) J Catal 178:146–152

    Article  CAS  Google Scholar 

  2. Marbán G, Fuertes AB (2005) Appl Catal B 57:43–53

    Article  Google Scholar 

  3. El-Shobaky GA, Ghozza AM (2004) Mater Lett 58:699–705

    Article  CAS  Google Scholar 

  4. Brookhaven National Laboratory, (1986) US Patent, 461479, 4619946, 4623634, 4613623 , 4935395 (1990)

  5. Yang RQ, Yu XC, Zhang Y, Li WZ, Tsubaki N (2008) Fuel 87:443–450

    Article  CAS  Google Scholar 

  6. Chinchen GC, Mansfield K, Spencer MS (November 1990) Chem Tech 692–699

  7. Herman RG (1991) Stud Surf Sci Catal 27:265–349

    Article  Google Scholar 

  8. Wang GC, Jiang L, Pang XY, Cai ZS, Pan YM, Zhao XZ, Morikawa Y, Nakamura J (2003) Surf Sci 543:118–130

    Article  CAS  Google Scholar 

  9. Ge Q, King DA (2001) J Chem Phys 114:1053–1054

    Article  CAS  Google Scholar 

  10. Graham AP, Toennies JP (2001) J Chem Phys 114:1051–1052

    Article  CAS  Google Scholar 

  11. Neef M, Doll K (2006) Surf Sci 600:1085–1092

    Article  CAS  Google Scholar 

  12. Gao ZH, Hao LF, Huang W (2005) Catal Lett 102:139–141

    Article  CAS  Google Scholar 

  13. Gao ZH, Huang W, Yin LH, Hao LF, Xie KC (2009) Catal Lett 127:354–359, doi:10.1007/s10562-008-9689-9

    Google Scholar 

  14. Raybaud P, Digne M, Iftimie R, Wellens W, Euzen P, Toulhoat H (2001) J Catal 201:236–246

    Article  CAS  Google Scholar 

  15. Ordejón P, Artacho E, Soler JM (1996) Phys Rev B 53:R10441–R10444

    Article  Google Scholar 

  16. Grochala W (2008) J Mol Model 14:887–890

    Article  CAS  Google Scholar 

  17. Artacho E, Sánchez-Portal D, Ordejón P, García A, Soler JM (1999) Phys Status Solidi B 215:809–817

    Article  CAS  Google Scholar 

  18. Dolg M, Liu W, Kalvoda S (2000) Int Quantum Chem 76:359–370

    Article  CAS  Google Scholar 

  19. Hirshfeld FL (1977) Theor Chim Acta 44:129–138

    Article  CAS  Google Scholar 

  20. Yun L, Florent B, Chafika G, Zhang Y, Maurel F, Hu Y, Fan BT (2008) J Mol Model 14:901–910

    Article  Google Scholar 

  21. Kohn W, Sham LJ (1965) Phys Rev A 140:1133–1137

    Article  Google Scholar 

  22. Charles K (1976) Introduction to solid state physics, 5th edn. Wiley, New York, p 23

    Google Scholar 

  23. Tajkhorshid E, Suhai S (2000) J Mol Struct (THEOCHEM) 501–502:297–313

    Article  Google Scholar 

  24. Klamt A, Schürmann GJ (1993) Chem Soc Perkin Trans 25:799–805

    Article  Google Scholar 

  25. Lide DR (1992) CRC handbook of chemistry and physics, 73th edn. CRC, Florida

    Google Scholar 

  26. Blyholder G (1964) J Phys Chem 68:772–2778

    Google Scholar 

  27. Wang SG, Cao DB, Li YW, Wang JG, Jiao HJ (2005) J Phys Chem B 109:18956–18963

    Article  CAS  Google Scholar 

  28. Tracy JC (1964) J Chem Phys 68:2772–2778

    Article  Google Scholar 

  29. Truong CM, Rodriguez JA, Goodman DW (1992) Surf Sci 271:L385–L391

    Article  CAS  Google Scholar 

  30. Yeo YY, Vattuone L, King DA (1996) J Chem Phys 104:3810–3821

    Article  CAS  Google Scholar 

  31. Gajdoš M, Hafner J (2005) Surf Sci 590:117–126

    Article  Google Scholar 

  32. Kresse G, Gil A, Sautet P (2003) Phys Rev B 68:073401–073401

    Article  Google Scholar 

  33. Zhao XX, Mi YM (2008) Acta Phys-Chim Sin 24:127–131

    Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the financial support of this study by the National Natural Science Foundation of China (Grant No.20676087), the National Basic Research Program of China (Grant No 2005CB221204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuo, Z., Huang, W., Han, P. et al. Adsorption of CO on Cu (110) and (100) surfaces using COSMO-based DFT. J Mol Model 15, 1079–1083 (2009). https://doi.org/10.1007/s00894-009-0471-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0471-8

Keywords

Navigation