Skip to main content
Log in

Experimental and DFT computational studies on 5-benzyl-4-(3,4-dimethoxyphenethyl)-2H-1,2,4-triazol-3(4H)-one

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The triazole compound, 5-benzyl-4-(3,4-dimethoxyphenethyl)-2H-1,2,4-triazol-3(4H)-one, has been synthesized and characterized by 1H-NMR, 13C-NMR, IR, and X-ray single-crystal determination. The compound crystallizes in the monoclinic space group P21 with a = 11.8844(3) Å, b = 17.5087(4) Å, c = 17.3648(6) Å, β = 99.990(2)˚ and Z = 8. In addition to the molecular geometry from X-ray experiment, the molecular geometry, vibrational frequencies and gauge including atomic orbital (GIAO) 1H- and 13C-NMR chemical shift values of the title compound in the ground state have been calculated using the density functional method (B3LYP) with 6-31G(d,p) basis set. The calculated results show that the optimized geometries can well reproduce the crystal structure and the theoretical vibrational frequencies and chemical shift values show good agreement with experimental ones. Besides, molecular electrostatic potential (MEP), natural bond orbital (NBO), and frontier molecular orbitals (FMO) analysis of the title compound were performed by the B3LYP/6-31G(d,p) method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhang Y, Guo ZJ, You XZ (2001) J Am Chem Soc 123:9378–9387

    Article  CAS  Google Scholar 

  2. Proft FD, Geerlings P (2001) Chem Rev 101:1451–1464

    Article  Google Scholar 

  3. Fitzgerald G, Andzelm J (1991) J Phys Chem 95:10531–0534

    Article  CAS  Google Scholar 

  4. Ziegler T (1991) Pure Appl Chem 63:873–878

    Article  CAS  Google Scholar 

  5. Andzelm J, Wimmer E (1992) J Chem Phys 96:1280–1303

    Article  CAS  Google Scholar 

  6. Scuseria GE (1992) J Chem Phys 97:7528–7530

    Article  CAS  Google Scholar 

  7. Dickson RM, Becke AD (1993) J Chem Phys 99:3898–3905

    Article  CAS  Google Scholar 

  8. Johnson BG, Gill PMW, Pople JA (1993) J Chem Phys 98:5612–5626

    Article  CAS  Google Scholar 

  9. Oliphant N, Bartlett RJ (1994) J Chem Phys 100:6550–6561

    Article  CAS  Google Scholar 

  10. Bhat AR, Bhat GV, Shenoy GG (2001) J Pharm Pharmacol 53:267–272

    Article  CAS  Google Scholar 

  11. Al-Soud Yassen A, Al-Dweri Mohammad N, Al-Masoudi Najim A (2004) Il Farmaco 59:775–783

    Article  Google Scholar 

  12. Demirbas N, Ugurluoglu R, Demirbas A (2002) Bioorg Med Chem 10:3717–3723

    Article  CAS  Google Scholar 

  13. Emilsson H, Salender H, Gaarder J (1985) Eur J Med Chim Ther 21:333–338

    Google Scholar 

  14. Tozkoparan B, Gökhan N, Aktay G, Yesilada E, Ertan M (2000) Eur J Med Chem 35:743–750

    Article  CAS  Google Scholar 

  15. Turan-Zitoui G, Kaplancikli ZA, Erol K, Kilic FS (1999) Il Farmaco 54:218–223

    Article  Google Scholar 

  16. Katica CR, Vesna D, Vlado K, Dora GM, Aleksandra B (2001) Molecules 6:815–824

    Article  Google Scholar 

  17. Kaszuwara W, Leonowicz M, Ukasiewicz A (1992) Mater Lett 12:429–433

    Article  CAS  Google Scholar 

  18. Prins R, Biagini-Cingi M, de Graaff RAG, Haasnoot J, Manotti-Lanfredi AM, Rabu P, Reedijk J, Ugozzoli F (1996) Inorg Chim Acta 248:35–44

    Article  CAS  Google Scholar 

  19. Drabent K, Biaoska A, Ciunik Z (2004) Inorg Chem Commun 7:224–227

    Article  CAS  Google Scholar 

  20. Lyakhov AS, Vorobiov AN, Gaponik PN, Ivashkevich LS, Matulis VE, Ivashkevich OA (2003) Acta Cryst C 59:o690–693

    Article  Google Scholar 

  21. Jia LH, Liu ZL, Liu W (2007) Acta Cryst E 63:o2766

    Article  Google Scholar 

  22. Sorescu DC, Bennett CM, Thompson DL (1998) J Phys A 102:10348–10357

    CAS  Google Scholar 

  23. Palmer MH, Christem D (2004) J Mol Struct 705:177–187

    Article  CAS  Google Scholar 

  24. Jimenez V, Alderete JB (2006) J Mol Struct (Theochem) 775:1–7

    Article  CAS  Google Scholar 

  25. El-Azhary AA, Suter HU, Kubelka J (1998) J Phys Chem A 102:620–629

    Article  CAS  Google Scholar 

  26. Da Silva G, Moore EE, Bozzelli JW (2006) J Phys Chem A 110:13979–13988

    Article  Google Scholar 

  27. Matulis VE, Ivashkevich OA, Gaponik PN, Elkind PD, Sukhanov GT, Bazyleva AB, Zaitsau DH (2008) J Mol Struct (Theochem) 854:18–25

    Article  CAS  Google Scholar 

  28. Billes F, Endredi H, Keresztury G (2000) J Mol Struct (Theochem) 530:183–200

    Article  CAS  Google Scholar 

  29. Krishnakumar V, Xavier RJ (2004) Spectrochim Acta A 60:709–714

    Article  CAS  Google Scholar 

  30. Zaza S, Guedira F, Zaydoun S, Saidi Idrissi M, Lautie A, Romain F (2004) Can J Anal Sci Spectrosc 49:15–23

    CAS  Google Scholar 

  31. Krishnakumar V, Keresztury G, Sundius T, Xavier RJ (2005) Spectrochim Acta A 61:261–267

    Article  Google Scholar 

  32. Pagacz-Kostrzewa M, Bronisz R, Wierzejewska M (2009) Chem Phys Lett 473:238–246

    Article  CAS  Google Scholar 

  33. Pitucha M, Borowski P, Karczmarzyk Z, Fruzinski A (2009) J Mol Struct 919:170–177

    Article  CAS  Google Scholar 

  34. Sanchez-Soto PJ, Morillo E, Perez-Rodriguez JL, Real C (1995) J Therm Anal 45:1189–1197

    Article  CAS  Google Scholar 

  35. Li J, Litzinger TA (2007) Thermochim Acta 454:116–127

    Article  CAS  Google Scholar 

  36. Badea M, Olar R, Marinescu D, Vasile G (2008) J Therm Anal Calorim 92:209–214

    Article  CAS  Google Scholar 

  37. Kumar NV, Mashelkar UC (2007) Heterocycl Commun 13:211

    CAS  Google Scholar 

  38. Perez-Castro I, Caamano O, Fernandez F, Garcia MD, Lopez C, De Clercq E (2007) Org Biomol Chem 5:3805–3813

    Article  CAS  Google Scholar 

  39. Bekirarcan O, Bektas H (2006) Molecules 11:469–477

    Article  Google Scholar 

  40. Haasnoot JG (2000) Coord Chem Rev 131:200–202

    Google Scholar 

  41. Li W, Jia HP, Ju ZF, Zhang J (2006) Cryst Growth Des 6:2136–2140

    Article  CAS  Google Scholar 

  42. Chen Z, Li X, Liang F (2008) J Solid State Chem 181:2078–2086

    Article  CAS  Google Scholar 

  43. Lin YY, Zhang YB, Zhang JP, Chen XM (2008) Cryst Growth Des 8:3673–3679

    Article  CAS  Google Scholar 

  44. Van Koningsbruggen PJ (2004) Top Curr Chem 233:123–149

    Google Scholar 

  45. Bronisz R (2005) Inorg Chem 44:4463–4465

    Article  CAS  Google Scholar 

  46. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03 Revision E01. Gaussian Inc, Wallingford, CT

    Google Scholar 

  47. Merrick JP, Moran D, Radom L (2007) J Phys Chem A 111:11683–11700

    Article  CAS  Google Scholar 

  48. Frisch A, Dennington R II, Keith T, Millam J, Nielsen AB, Holder AJ, Hiscocks J (2007) GaussView Reference Version 40. Gaussian Inc, Pittsburgh

    Google Scholar 

  49. Ditchfield R (1972) J Chem Phys 56(11):5688–5691

    Article  CAS  Google Scholar 

  50. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112(23):8251–8260

    Article  CAS  Google Scholar 

  51. Politzer P, Murray J (2002) Theor Chem Acc 108:134–142

    CAS  Google Scholar 

  52. Farrugia LJ (1997) J Appl Crystallogr 30:565

    Article  CAS  Google Scholar 

  53. Hanif M, Qadeer G, Rama NH, Akhtar J, Helliwell M (2009) Acta Cryst E65:o387

    CAS  Google Scholar 

  54. Köysal Y, Işık Ş, Doğdaş E, Tozkoparan B, Ertan M (2004) Acta Cryst C60:o356–357

    Google Scholar 

  55. Sancak K, Ustabaş R, Çoruh U, Er M, Ünver Y, Yavuz M (2005) Acta Cryst E61:o1764–1766

    CAS  Google Scholar 

  56. Ünver Y, Ustabaş R, Çoruh U, Sancak K, Vazquez-Lopez EM (2006) Acta Cryst E62:o3938–3939

    Google Scholar 

  57. Zhao PS, Xu JM, Zhang WG, Jian FF, Zhang L (2007) Struct Chem 18:993–1000

    Article  CAS  Google Scholar 

  58. Genç S, Dege N, Çetin A, Cansız A, Şekerci M, Dinçer M (2004) Acta Cryst E60:o1339–1341

    Google Scholar 

  59. Dinçer M, Avcı D, Şekerci M, Atalay Y (2008) J Mol Model 14:823–832

    Article  Google Scholar 

  60. Vainilavicius P, Smicius R, Jakubkiene V, Tumkevicius S (2001) Manatshefte für Chemie 132:825–831

    CAS  Google Scholar 

  61. Scrocco E, Tomasi J (1978) Adv Quantum Chem 11:115–121

    Article  CAS  Google Scholar 

  62. Luque FJ, Lopez JM, Orozco M (2000) Theor Chem Acc 103:343–345

    CAS  Google Scholar 

  63. Okulik N, Jubert AH (2005) Internet Electron J Mol Des 4:17–30

    CAS  Google Scholar 

  64. Politzer P, Laurence PR, Jayasuriya K, McKinney J (1985) Special issue of Environ Health Perspect 61:191–202

    Article  CAS  Google Scholar 

  65. Scrocco E, Tomasi J (1973) Topics in current chemistry, vol 7. Springer, Berlin, p 95

    Google Scholar 

  66. Politzer P, Truhlar DG (1981) Chemical applications of atomic and molecular electrostatic potentials. Plenum, New York

    Google Scholar 

  67. Fleming I (1976) Frontier orbitals and organic chemical reactions. Wiley, London

    Google Scholar 

Download references

Acknowledgments

This study was supported financially by the Research Centre of Ondokuz Mayıs University (Project No: F-476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Tanak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanak, H., Köysal, Y., Yavuz, M. et al. Experimental and DFT computational studies on 5-benzyl-4-(3,4-dimethoxyphenethyl)-2H-1,2,4-triazol-3(4H)-one. J Mol Model 16, 447–457 (2010). https://doi.org/10.1007/s00894-009-0559-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0559-1

Keywords

Navigation