Skip to main content
Log in

Experimental and quantum chemical calculational studies on 2-[(4-Fluorophenylimino)methyl]-3,5-dimethoxyphenol

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The Schiff base compound, 2-[(4-Fluorophenylimino)methyl]-3,5-dimethoxyphenol, has been synthesized and characterized by IR, electronic spectroscopy, and X-ray single-crystal determination. Molecular geometry from X-ray experiment of the title compound in the ground state have been compared using the Hartree-Fock (HF) and density functional method (B3LYP) with 6–31G(d) basis set. Calculated results show that density functional theory (DFT) and HF can well reproduce the structure of the title compound. The energetic behavior of the title compound in solvent media has been examined using B3LYP method with the 6–31G(d) basis set by applying the polarizable continuum model (PCM). The total energy of the title compound decrease with the increasing polarity of the solvent. By using TD-DFT and TD-HF methods, electronic absorption spectra of the title compound have been predicted and a good agreement with the TD-DFT method and the experimental ones is determined. In addition, DFT calculations of the title compound, molecular electrostatic potential (MEP), natural bond orbital (NBO), and thermodynamic properties were performed at B3LYP/6–31G(d) level of theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barton D, Ollis WD (1979) Comprehensive Organic Chemistry, vol 2. Pergamon, Oxford

    Google Scholar 

  2. Layer RW (1963) Chem Rev 63:489–510

    Article  CAS  Google Scholar 

  3. Ingold CK (1969) Structure and Mechanism in Organic Chemistry, 2nd edn. Cornell Univ, Ithaca

    Google Scholar 

  4. Taggi AE, Hafez AM, Wack H, Young B, Ferraris D, Lectka T (2002) J Am Chem Soc 124:6626–6635

    Article  CAS  Google Scholar 

  5. Novopoltseva OM (1995) Cand Sci (Chem). Dissertation, Volgograd

    Google Scholar 

  6. Cohen MD, Schmidt GMJ, Flavian S (1964) J Chem Soc 2041–2051

  7. Hadjoudis E, Vitterakis M, Mavridis IM (1987) Tetrahedron 43:1345–1360

    Article  CAS  Google Scholar 

  8. Xu XX, You XZ, Sun ZF, Wang X, Liu HX (1994) Acta Crystallogr A C50:1169–1171

    CAS  Google Scholar 

  9. Alarcon SH, Pagani D, Bacigalupo J, Olivieri AC (1999) J Mol Struct 475:233–240

    Article  Google Scholar 

  10. Köysal Y, Işık Ş, Ağar E (2007) Acta Crystallogr E63:o4916

    Google Scholar 

  11. Özek A, Büyükgüngör O, Albayrak Ç, Odabaşoğlu M (2009) Acta Crystallogr E65:o791

    Google Scholar 

  12. Kılıç I, Ağar E, Erşahin F, Işık Ş (2009) Acta Crystallogr E65:o934

    Google Scholar 

  13. Temel E, Albayrak Ç, Odabaşoğlu M, Büyükgüngör O (2007) Acta Crystallogr E63:o374–376

    CAS  Google Scholar 

  14. Özek A, Albayrak Ç, Odabaşoğlu M, Büyükgüngör O (2007) Acta Crystallogr C63:o177–o180

    Google Scholar 

  15. Karabıyık H, Ocak İskeleli N, Petek H, Albayrak Ç, Ağar E (2008) J Mol Struct 873:130–136

    Article  Google Scholar 

  16. Koşar B, Büyükgüngör O, Albayrak Ç, Odabaşoğlu M (2004) Acta Crystallogr C60:o458–o460

    Google Scholar 

  17. Tanak H, Erşahin F, Ağar E, Büyükgüngör O, Yavuz M (2008) Anal Sci 24:237–238

    Article  Google Scholar 

  18. Zhang Y, Guo ZJ, You XZ (2001) J Am Chem Soc 123:9378–9387

    Article  CAS  Google Scholar 

  19. Proft FD, Geerlings P (2001) Chem Rev 101:1451–1464

    Article  Google Scholar 

  20. Fitzgerald G, Andzelm J (1991) J Phys Chem 95:10531–10534

    Article  CAS  Google Scholar 

  21. Ziegler T (1991) Pure Appl Chem 63:873–878

    Article  CAS  Google Scholar 

  22. Andzelm J, Wimmer E (1992) J Chem Phys 96:1280–1303

    Article  CAS  Google Scholar 

  23. Scuseria GE (1992) J Chem Phys 97:7528–7530

    Article  CAS  Google Scholar 

  24. Dickson RM, Becke AD (1993) J Chem Phys 99:3898–3905

    Article  CAS  Google Scholar 

  25. Johnson BG, Gill PMW, Pople JA (1993) J Chem Phys 98:5612–5626

    Article  CAS  Google Scholar 

  26. Jian FF, Zhao PS, Bai ZS, Zhang L (2005) Struct Chem 16:635–639

    Article  CAS  Google Scholar 

  27. Schlegel HB (1982) J Comput Chem 3:214–218

    Article  CAS  Google Scholar 

  28. Peng C, Ayala PY, Schlegel HB, Frisch MJ (1996) J Comput Chem 17:49–56

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01. Gaussian Inc, Wallingford

    Google Scholar 

  30. Foresman JB, Frisch A (1996) Exploring chemistry with electronic structure methods, 2nd edn. Gaussian Inc, Pittsburgh

    Google Scholar 

  31. Frisch A, Dennington R II, Keith T, Millam J, Nielsen AB, Holder AJ, Hiscocks J (2007) GaussView Reference, Version 4.0. Gaussian Inc, Pittsburgh

    Google Scholar 

  32. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117–129

    Article  CAS  Google Scholar 

  33. Barone V, Cossi M (1998) J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  34. Cossi M, Rega N, Scalmani G, Barone V (2003) J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  35. Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999–3094

    Article  CAS  Google Scholar 

  36. Runge E, Gross EKU (1984) Phys Rev Lett 52:997–1000

    Article  CAS  Google Scholar 

  37. Stratmann RE, Scuseria GE, Frisch MJ (1998) J Chem Phys 109:8218–8224

    Article  CAS  Google Scholar 

  38. Bauernschmitt R, Ahlrichs R (1996) Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  39. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439–4449

    Article  CAS  Google Scholar 

  40. Politzer P, Murray J (2002) Theor Chem Acc 108:134–142

    CAS  Google Scholar 

  41. Moustakali-Mavridis I, Hadjoudis E, Mavridis A (1978) Acta Crystallogr B34:3709–3715

    CAS  Google Scholar 

  42. Bernstein J, Davies RE, Shimoni L, Chang NL (1995) Angew Chem Int Ed Engl 34:1555–1573

    Article  CAS  Google Scholar 

  43. Teimouri A, Emami M, Chermahini AN, Dabbagh HA (2009) Spectrochim Acta Part A 71:1749–1755

    Article  Google Scholar 

  44. Yeap GY, Ha ST, Ishizawa N, Suda K, Boey PL, Mahmood WAK (2003) J Mol Struct 658:87–99

    Article  CAS  Google Scholar 

  45. Ünver H, Yildiz M, Kiraz A, Özgen Ö (2009) J Chem Crystallogr 39:17–23

    Article  Google Scholar 

  46. Abkowicz-Bienko AJ, Bienko DC, Latajka Z (2000) J Mol Struct 552:165–175

    Article  CAS  Google Scholar 

  47. Masternak A, Wenska G, Milecki J, Skalski B, Franzen S (2005) J Phys Chem 109:759–766

    CAS  Google Scholar 

  48. Le Y, Chen JF, Pu M (2008) Int J Pharm 358:214–218

    Article  CAS  Google Scholar 

  49. Ledbetter JW Jr (1968) J Phys Chem 72:4111–4115

    Article  CAS  Google Scholar 

  50. Dudek GO, Dudek EP (1966) J Am Chem Soc 88:2407–2412

    Article  CAS  Google Scholar 

  51. Salman SR, Shawkat SH, Al-Obaidi GM (1989) Spectrosc Lett 22:1265–1273

    Article  CAS  Google Scholar 

  52. Yıldız M, Kılıç Z, Hökelek T (1998) J Mol Struct 441:1–10

    Article  Google Scholar 

  53. Nazır H, Yıldız M, Yılmaz H, Tahir MN, Ülkü D (2000) J Mol Struct 524:241–250

    Article  Google Scholar 

  54. Ünver H, Yıldız M, Zengin DM, Özbey S, Kendi E (2001) J Chem Crystallogr 31:211–216

    Article  Google Scholar 

  55. Salman SR, Kamounah FS (2002) Spectrosc Lett 35:327–335

    Article  CAS  Google Scholar 

  56. Yıldız M (2004) Spectrosc Lett 37:367–381

    Article  Google Scholar 

  57. Dziembowska T, Jogodzinska E, Rozwadowski Z, Kotfica M (2001) J Mol Struct 598:229–234

    Article  CAS  Google Scholar 

  58. Rong ZC, Jiang LZ, Hong CY, Shan CH, Zhi Wu Y, Hua YL (2009) THEOCHEM 899:86–93

    Article  Google Scholar 

  59. Scrocco E, Tomasi J (1978) Adv Quantum Chem 11:115–121

    Article  CAS  Google Scholar 

  60. Luque FJ, Lopez JM, Orozco M (2000) Theor Chem Acc 103:343–345

    CAS  Google Scholar 

  61. Politzer P, Laurence PR, Jayasuriya K, McKinney J (1985) Special issue of Environ Health Perspect 61:191–202

    Article  CAS  Google Scholar 

  62. Scrocco E, Tomasi J (1973) Topics in Current Chemistry, vol. 7. Springer Verlag, Berlin, p 95

    Google Scholar 

  63. Politzer P, Truhlar DG (1981) Chemical Applications of Atomic and Molecular Electrostatic Potentials. Plenum, New York

    Google Scholar 

  64. Hussein W, Walker CG, Peralta-Inga Z, Murray JS (2001) Int J Quantum Chem 82:160–169

    Article  CAS  Google Scholar 

  65. Politzer P, Concha MC, Murray JS (2000) Int J Quantum Chem 80:184–192

    Article  CAS  Google Scholar 

  66. Özdemir N, Dinçer M, Çukurovalı A (2009) J Mol Model. doi:10.1007/s00894-009-0552-8

  67. Schwenke DW, Truhlar DG (1985) J Chem Phys 82:2418–2427

    Article  CAS  Google Scholar 

  68. Gutowski M, Chalasinski G (1993) J Chem Phys 98:4728–4738

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported financially by the Research Centre of Ondokuz Mayis University (Project No: F-476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Tanak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanak, H., Ağar, A. & Yavuz, M. Experimental and quantum chemical calculational studies on 2-[(4-Fluorophenylimino)methyl]-3,5-dimethoxyphenol. J Mol Model 16, 577–587 (2010). https://doi.org/10.1007/s00894-009-0574-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0574-2

Keywords

Navigation