Skip to main content
Log in

DFT study of linear and nonlinear optical properties of donor-acceptor substituted stilbenes, azobenzenes and benzilideneanilines

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A theoretical analysis of the linear and nonlinear optical properties of six push–pull π-conjugated molecules with stilbene, azobenzene and benzilideneaniline as a backbone is presented. The photophysical properties of the investigated systems were determined by using response functions combined with density functional theory (DFT). Several different exchange-correlation potentials were applied in order to determine parameters describing the one- and two-photon spectra of the studied molecules. In particular, the recently proposed Coulomb-attenuated model (CAM-B3LYP) was used to describe charge-transfer (CT) excited states. In order to compare theoretical predictions with available experimental data, calculations with inclusion of solvent effects were performed. The BLYP and the CAM-B3LYP functionals were found to yield values of two-photon absorption (TPA) probabilities closer to experimental values than the B3LYP functional or the HF wavefunction. Moreover, molecular static hyperpolarisabilities were determined using both DFT and second-order Møller-Plesset perturbation (MP2) theory. Likewise, the CAM-B3LYP functional was found to outperform other applied exchange-correlation potentials in determining first hyperpolarisability (β). Moreover, it was confirmed on a purely theoretical basis that the presence of a –C=C– bridge between the phenyl rings leads to a much larger nonlinear optical response in comparison with a –N=N– bridge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Skotheim TJ (1986) Handbook of conducting polymers. Dekker, New York

    Google Scholar 

  2. Chemla DS, Zyss J (1987) Nonlinear optical properties of organic molecules and crystals. Academic, New York

    Google Scholar 

  3. Prasad PN, Williams DJ (1991) Introduction to nonlinear optical effects in molecules and polymers. Wiley, New York

    Google Scholar 

  4. Nalwa HS, Siezo M (1994) Nonlinear optics of organic molecules and polymers. CRC, Boco Raton

    Google Scholar 

  5. Zyss J (1994) Molecular nonlinear optics: materials, physics and devices. Academic, New York

    Google Scholar 

  6. Dalton LR (2001) Nonlinear optical polymeric materials: from chromophore design to commercial applications. Advances in polymer science, vol 158. Springer, Heidelberg

    Google Scholar 

  7. Dalton LR (2001) The role of nonlinear optical devices in the optical communications age. Kluwer, Dordrecht

    Google Scholar 

  8. Marde SRR, Perry JW (1994) Science 263:1706–1707

    Google Scholar 

  9. Denning RG (1995) J Mater Chem 5:365–378

    Article  CAS  Google Scholar 

  10. Goonesekera A, Ducharme S (1999) J Appl Phys 85:6506

    Article  CAS  Google Scholar 

  11. Stahelin M, Burland DM, Rice JE (1992) Chem Phys Lett 191:245–250

    Article  CAS  Google Scholar 

  12. De Boni L, Piovesan E, Misoguti L, Zilio SC, Mendonca CR (2007) J Phys Chem A 111:6222–6224

    Article  Google Scholar 

  13. Oliveira SL, Correa DS, Misoguti L, Constantino CJL, Aroca RF, Zilio SC, Mendonca CR (2005) Adv Mater 17:1890–1893

    Article  CAS  Google Scholar 

  14. De Boni L, Misoguti L, Zilio SC, Mendonca CR (2005) Chem Phys Chem 6:1121–1125

    Google Scholar 

  15. De Boni L, Constantino CJL, Misoguti L, Aroca RF, Zilio SC, Mendonca CR (2003) Chem Phys Lett 371:744–749

    Article  Google Scholar 

  16. van Walree CA, Franssen O, Marsman AW, Flipse MC, Jenneskens LW (1997) J Chem Soc Perkin Trans 2:799–807

    Google Scholar 

  17. van Walree CA, Marsman AW, Flipse MC, Jenneskens LW, Smeets WJJ, Spek AL (1997) J Chem Soc Perkin Trans 2:809–819

    Google Scholar 

  18. Baev A, Prasad PN, Samoc M (2005) J Chem Phys 122:224309

    Article  Google Scholar 

  19. Chandra Jha P, Anusooya Pati Y, Ramasesha S (2005) Mol Phys 14:1859–1873

    Google Scholar 

  20. Day PN, Nguyen KA, Pachter R (2006) J Chem Phys 125:094103

    Article  Google Scholar 

  21. Suponitsky KY, Tafur S, Masunov AE (2008) J Chem Phys 129:044109

    Article  Google Scholar 

  22. Champagne B (1996) Chem Phys Lett 261:57–65

    Article  CAS  Google Scholar 

  23. Jacquemin D, André J, Perpéte B (2004) J Chem Phys 121:4389–4396

    Article  CAS  Google Scholar 

  24. Antonov L, Kamada K, Ohta K, Kamounah FS (2003) Phys Chem Chem Phys 5:1193–1197

    Article  CAS  Google Scholar 

  25. Ohta K, Antonov L, Yamada S, Kamada K (2007) J Chem Phys 127:084504–084515

    Article  Google Scholar 

  26. Oudar JL, Chemla DS (1977) J Chem Phys 66:2664–2668

    Article  CAS  Google Scholar 

  27. Kawata S, Kawata Y (2000) Chem Rev 100:1777–1788

    Article  CAS  Google Scholar 

  28. Delaire JA, Nakatani K (2000) Chem Rev 100:1817–1846

    Article  CAS  Google Scholar 

  29. Adamo C, Scuseria GE, Barone V (1999) J Chem Phys 111:2889–2899

    Article  CAS  Google Scholar 

  30. Jamorski-Jödicke C, Lüthi HP (2002) J Chem Phys 117:4146–4156

    Article  Google Scholar 

  31. Cavillot V, Champagne B (2002) Chem Phys Lett 354:449–457

    Article  CAS  Google Scholar 

  32. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  33. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  34. Yanai T, Tew DP, Handy NC (2004) Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  35. Tawada Y, Tsuneda T, Yanagisawa S, Yanai T, Hirao K (2004) J Chem Phys 120:8425–8433

    Article  CAS  Google Scholar 

  36. Peach MJG, Benfield P, Helgaker T, Tozer DJ (2008) J Chem Phys 128:044118

    Article  Google Scholar 

  37. Yanai T, Harrison RJ, Handy NC (2005) Mol Phys 103:413–424

    Article  CAS  Google Scholar 

  38. Peach MJG, Cohen AJ, Tozer DJ (2006) Phys Chem Chem Phys 8:4543–4549

    Article  CAS  Google Scholar 

  39. Iikura H, Tsuneda T, Yanai T, Hirao K (2001) J Chem Phys 115:3540–3544

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.02. Gaussian, Wallingford CT

  41. DALTON (2005) A molecular electronic structure program, Release 2.0 see http://www.kjemi.uio.no/software/dalton/dalton.html

  42. Schmidt MW, Baldridge KK, Boatz JA, Elbert St, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA Jr (1993) The general atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  43. Hättig C, Hald K (2002) Phys Chem Chem Phys 4:2111–2118

    Article  Google Scholar 

  44. Hättig C, Köhn A (2002) J Chem Phys 117:6939–6951

    Article  Google Scholar 

  45. Fliegl H, Köhn A, Hättig C, Ahlrichs R (2003) J Am Chem Soc 125:9821–9827

    Article  CAS  Google Scholar 

  46. Zaleśny R, Bartkowiak W, Styrcz S, Leszczynski J (2002) J Phys Chem A 106:4032–4037

    Article  Google Scholar 

  47. Krawczyk P, Kaczmarek A, Zaleśny R, Matczyszyn K, Bartkowiak W, Ziółkowski M, Cysewski P (2009) J Mol Model 15:581–590

    Article  CAS  Google Scholar 

  48. Zaleśny R, Matczyszyn K, Kaczmarek A, Bartkowiak W, Cysewski P (2007) J Mol Model 13:785–791

    Article  Google Scholar 

  49. Chen PC, Chiech YC (2003) Theochem 624:191–200

    Article  CAS  Google Scholar 

  50. Rau H (1973) Angew Chem Int Ed Engl 12:224–235

    Article  Google Scholar 

  51. Jacquemin D, Bouhy M, Perpéte EA (2006) J Chem Phys 124:204321

    Article  Google Scholar 

  52. Jacquemin D, Preat J, Wahtelet V, Fontaine M, Perpéte EA (2005) J Am Chem Soc 128:2072–2083

    Article  Google Scholar 

  53. Peach MJG, Helgaker T, Sałek P, Keal TW, Lutnaes OB, Tozer DJ, Handy NC (2006) Phys Chem Chem Phys 8:558–562

    Google Scholar 

  54. Jacquemin D, Perpéte EA, Scalmani G, Frisch MJ, Kobayashi R, Adamo C (2008) J Chem Phys 126:144105

    Article  Google Scholar 

  55. Jacquemin, Perpéte EA, Scuseria GE, Ciofini I, Adamo C (2008) Chem Phys Lett 465:226–229

    Article  CAS  Google Scholar 

  56. Liptay W (1974) In: Lim EC (ed) Excited states, vol 1. Academic, New York, p 129

    Google Scholar 

  57. Ch JP, Wang Y, Ågren H (2008) Chem Phys Chem 9:111–116

    Google Scholar 

  58. Day PN, Nguyen KA, Pachter R (2005) J Phys Chem B 109:1803–1814

    Article  CAS  Google Scholar 

  59. Zaleśny R, Wójcik G, Mossakowska I, Bartkowiak W, Avramopoulos A, Papadopoulos MG (2009) Theochem 907:46–50

    Article  Google Scholar 

  60. Medved M, Noga J, Jacquemin D, Assfeld X, Perpéte EA (2007) Theochem 821:160–165

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Computational grants from the Poznan Supercomputing and Networking Center (PCSS) and ACK CYFRONET AGH are acknowledged. The author thanks Dr. Żaneta Czyżnikowska for computing excited state dipole moments using the CC2 approach.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Przemysław Krawczyk.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krawczyk, P. DFT study of linear and nonlinear optical properties of donor-acceptor substituted stilbenes, azobenzenes and benzilideneanilines. J Mol Model 16, 659–668 (2010). https://doi.org/10.1007/s00894-009-0623-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-009-0623-x

Keywords

Navigation