Skip to main content
Log in

Theoretical study of hydrogen bonding interactions on MDI-based polyurethane

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Hydrogen bonding among hard–hard segments and hard–soft segments in 4,4′-diphenylmethane diisocyanate (MDI)-based polyurethane was investigated theoretically by density functional theory (DFT). Both B3LYP/6-31G* and B3PW91/6-31G* methods gave good structures, reasonable Mulliken charges, binding energies, dipole moments, and good infrared (IR) spectra trends in predicting hydrogen bonding. Bond distances R(N–H⋯O), which were in the range of 3.005–3.028 Å for the carbonyl bonded hydrogen-bond, and 3.074–3.075 Å for the ester bonded hydrogen-bond, are in reasonable agreement with experimental values. Most of the carbonyl oxygen in polyurethane exists in a hydrogen-bonded form. Complex (c), with two carbonyl hydrogen bonds, features the largest dipole moment, while complex (d) with two ester hydrogen bonds, possesses the smallest dipole moment, i.e., lower than that of the isolated monomer, which may be due to the symmetry of the two monomers. These results confirm that the DFT method is a good tool with which to study weak interactions, and indicate that hydrogen bonds are indeed formed between carbonyl and N-H, or ester and N-H, with the former being stronger.

Possible interactions in MDI-based polyurethane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lendlein A, Kelch S (2002) Angew Chem Int Ed 41:2034–2057

    Article  CAS  Google Scholar 

  2. Lee BS, Chun BC, Chung YC, Sul KI, Cho JW (2001) Macromolecules 34:6431–6437

    Article  CAS  Google Scholar 

  3. Lai YC, Quinn ET (1995) J Polym Sci A 33(11):1767–1772

    Article  CAS  Google Scholar 

  4. Takahashi T, Hayashi N, Hayashi S (1996) J Appl Polym Sci 60:1061–1069

    Article  CAS  Google Scholar 

  5. Yang JH, Chun BC, Chung YC, Cho JH (2003) Polymer 44:3251–3258

    Article  CAS  Google Scholar 

  6. Coleman MM, Skrovanek DJ, Hu J, Painter PC (1988) Macromolecules 21:59–65

    Article  CAS  Google Scholar 

  7. Srichatrapimuk VW, Cooper SL (1978) J Macromol Sci Phys 15:267–311

    Article  Google Scholar 

  8. Senich GA, MacKnight WJ (1980) Macromolecules 13:106–110

    Article  CAS  Google Scholar 

  9. Brunette CM, Hsu SL, MacKnight WJ (1982) Macromolecules 15:71–77

    Article  CAS  Google Scholar 

  10. Christenson CP, Harthcock MA, Meadows MD, Spell HL, Howard WL, Creswick MW, Guerra RE, Turner RBP (1986) J Polym Sci B 24:1401–1439

    Article  CAS  Google Scholar 

  11. Lee HS, Wang YK, Hsu SL (1987) Macromolecules 20:2089–2095

    Article  CAS  Google Scholar 

  12. Lee SS, Wang YK, MacKnight WI, Hsu SL (1988) Macromolecules 21(1):270–273

    Article  Google Scholar 

  13. Hadzi D (ed) (1997) Theoretical treatment of hydrogen bonding. Wiley, Chichester

  14. Bene JED (1998) Hydrogen bonding 1: encyclopedia of computational chemistry, vol 2. Wiley, New York

    Google Scholar 

  15. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  16. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  17. Lee WYC, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  18. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6681

    Article  CAS  Google Scholar 

  19. Boys SF, Bernardi F (1970) Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  20. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian 2003W Revision B.05. Gaussian Inc, Pittsburgh

    Google Scholar 

  21. Lord RC, Merrifield RE (1953) J Chem Phys 21:166–167

    Article  CAS  Google Scholar 

  22. Teo LS, Chen CY, Kuo JF (1997) Macromolecules 30(6):1793–1799

    Article  CAS  Google Scholar 

  23. Vergenz RA, Yazji I, Whittington C, Daw J, Tran KT (2003) J Am Chem Soc 125:12318–12327

    Article  CAS  Google Scholar 

  24. Hwang KKS, Wu G, Lin SB, Cooper SL (1984) J Polym Sci Polym Chem Ed 22(7):1677–1697

    Article  CAS  Google Scholar 

  25. Luo N, Wang DN, Ying SK (1997) Macromolecules 30(15):4405–4409

    Article  Google Scholar 

Download references

Acknowledgment

This work was financially supported by the project “Development of Shape Memory Knitted Fabrics/Garments” (K.14.37.ZR01). The authors wish to express their gratitude for this generous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlian Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Hu, J., Chen, S. et al. Theoretical study of hydrogen bonding interactions on MDI-based polyurethane. J Mol Model 16, 1391–1399 (2010). https://doi.org/10.1007/s00894-010-0645-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0645-4

Keywords

Navigation