Skip to main content
Log in

Effect of the SH3-SH2 domain linker sequence on the structure of Hck kinase

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The coordination of activity in biological systems requires the existence of different signal transduction pathways that interact with one another and must be precisely regulated. The Src-family tyrosine kinases, which are found in many signaling pathways, differ in their physiological function despite their high overall structural similarity. In this context, the differences in the SH3-SH2 domain linkers might play a role for differential regulation, but the structural consequences of linker sequence remain poorly understood. We have therefore performed comparative molecular dynamics simulations of wildtype Hck and of a mutant Hck in which the SH3-SH2 domain linker is replaced by the corresponding sequence from the homologous kinase Lck. These simulations reveal that linker replacement not only affects the orientation of the SH3 domain itself, but also leads to an alternative conformation of the activation segment in the Hck kinase domain. The sequence of the SH3-SH2 domain linker thus exerts a remote effect on the active site geometry and might therefore play a role in modulating the structure of the inactive kinase or in fine-tuning the activation process itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Thomas SM, Brugge JS (1997) Cellular functions regulated by src family kinases. Annu Rev Cell Dev Biol 13:513–609

    Article  CAS  Google Scholar 

  2. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365

    Article  CAS  Google Scholar 

  3. Brown MT, Cooper JA (1996) Regulation, substrates and functions of src. Biochim Biophys Acta 1287:121–149

    Google Scholar 

  4. Tatosyan AG, Mizenina OA (2000) Kinases of the src family: structure and functions. Biochemistry (Mosc) 65:49–58

    CAS  Google Scholar 

  5. Engen JR, Wales TE, Hochrein JM, Meyn MA 3rd, Banu Ozkan S, Bahar I, Smithgall TE (2008) Structure and dynamic regulation of src-family kinases. Cell Mol Life Sci 65:3058–3073

    Article  CAS  Google Scholar 

  6. Williams JC, Weijland A, Gonfloni S, Thompson A, Courtneidge SA, Superti-Furga G, Wierenga RK (1997) The 2.35 a crystal structure of the inactivated form of chicken src: a dynamic molecule with multiple regulatory interactions. J Mol Biol 274:757–775

    Article  CAS  Google Scholar 

  7. Xu W, Harrison SC, Eck MJ (1997) Three-dimensional structure of the tyrosine kinase c-src. Nature 385:595–602

    Article  CAS  Google Scholar 

  8. Xu W, Doshi A, Lei M, Eck MJ, Harrison SC (1999) Crystal structures of c-src reveal features of its autoinhibitory mechanism. Mol Cell 3:629–638

    Article  CAS  Google Scholar 

  9. Sicheri F, Moarefi I, Kuriyan J (1997) Crystal structure of the src family tyrosine kinase hck. Nature 385:602–609

    Article  CAS  Google Scholar 

  10. Schindler T, Sicheri F, Pico A, Gazit A, Levitzki A, Kuriyan J (1999) Crystal structure of hck in complex with a src family-selective tyrosine kinase inhibitor. Mol Cell 3:639–648

    Article  CAS  Google Scholar 

  11. Lerner EC, Smithgall TE (2002) Sh3-dependent stimulation of src-family kinase autophosphorylation without tail release from the sh2 domain in vivo. Nat Struct Biol 9:365–369

    CAS  Google Scholar 

  12. Moarefi I, LaFevre-Bernt M, Sicheri F, Huse M, Lee CH, Kuriyan J, Miller WT (1997) Activation of the src-family tyrosine kinase hck by sh3 domain displacement. Nature 385:650–653

    Article  CAS  Google Scholar 

  13. Cowan-Jacob SW (2006) Structural biology of protein tyrosine kinases. Cell Mol Life Sci 63:2608–2625

    Article  CAS  Google Scholar 

  14. Hubbard SR, Till JH (2000) Protein tyrosine kinase structure and function. Annu Rev Biochem 69:373–398

    Article  CAS  Google Scholar 

  15. Yamaguchi H, Hendrickson WA (1996) Structural basis for activation of human lymphocyte kinase lck upon tyrosine phosphorylation. Nature 384:484–489

    Article  CAS  Google Scholar 

  16. Harrison SC (2003) Variation on an src-like theme. Cell 112:737–740

    Article  CAS  Google Scholar 

  17. Young MA, Gonfloni S, Superti-Furga G, Roux B, Kuriyan J (2001) Dynamic coupling between the sh2 and sh3 domains of c-src and hck underlies their inactivation by c-terminal tyrosine phosphorylation. Cell 105:115–126

    Article  CAS  Google Scholar 

  18. Arold ST, Ulmer TS, Mulhern TD, Werner JM, Ladbury JE, Campbell ID, Noble ME (2001) The role of the src homology 3-src homology 2 interface in the regulation of src kinases. J Biol Chem 276:17199–17205

    Article  CAS  Google Scholar 

  19. Hofmann G, Schweimer K, Kiessling A, Hofinger E, Bauer F, Hoffmann S, Rösch P, Campbell ID, Werner JM, Sticht H (2005) Binding, domain orientation, and dynamics of the lck sh3-sh2 domain pair and comparison with other src-family kinases. Biochemistry 44:13043–13050

    Article  CAS  Google Scholar 

  20. Tripos (1991-2002) Sybyl 6.9, release 7.0a. St. Louis, MO

  21. Thomson MA (2004) Arguslab 4.0.1. Planaria Software LLC, Seattle, WA

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian03. Gaussian Inc, Wallingford, CT

    Google Scholar 

  23. Bayly CI, Cieplak P, Cornell WD, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the resp model. J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  24. Cornell WD, Cieplak P, Bayly CI, Kollman PA (1993) Application of resp charges to calculate conformational energies, hydrogen bond energies and free energies of solvation. J Am Chem Soc 115:9620–9631

    Article  CAS  Google Scholar 

  25. Case DA, Darden TA III, TEC SCL, Wang J, Duke RE, Luo R, Merz KM, Wang B, Pearlman DA, Crowley M, Brozell S, Tsui V, Gohlke H, Mongan J, Hornak V, Cui G, Beroza P, Schafmeister C, Caldwell JW, Ross WS, Kollman PA (2004) Amber 8. University of California, San Francisco

    Google Scholar 

  26. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE 3rd, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) Amber, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comp Phys Commun 91:1–41

    Article  CAS  Google Scholar 

  27. Cheatham TE 3rd, Cieplak P, Kollman PA (1999) A modified version of the Cornell et al. force field with improved sugar pucker phases and helical repeat. J Biomol Struct Dyn 16:845–862

    CAS  Google Scholar 

  28. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KMJ, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force fiel for the simulaton of proteins, nucleic acids and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  29. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  CAS  Google Scholar 

  30. Homeyer N, Horn AH, Lanig H, Sticht H (2006) Amber force-field parameters for phosphorylated amino acids in different protonation states: Phosphoserine, phosphothreonine, phosphotyrosine, and phosphohistidine. J Mol Model 12:281–289

    Article  CAS  Google Scholar 

  31. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  32. Wartha F, Horn AHC, Meiselbach H, Sticht H (2005) Molecular dynamics simulations of hiv-1 protease suggest different mechanisms contributing to drug resistance. J Chem Theor Comput 1:315–324

    Article  CAS  Google Scholar 

  33. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  34. Darden TA, York DM, Pedersen LG (1993) Particle mesh ewald. An n.Log(n) method for ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  35. Ryckaert JP, Ciccotti G, Berendsen HJC (1977) Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  36. Humphrey W, Dalke A, Schulten K (1996) Vmd—visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  37. Accelrys (2005) Ds viewerpro suite 6.0 (computer program). San Diego, CA

  38. Levinson NM, Kuchment O, Shen K, Young MA, Koldobskiy M, Karplus M, Cole PA, Kuriyan J (2006) A src-like inactive conformation in the abl tyrosine kinase domain. PLoS Biol 4:e144

    Article  Google Scholar 

  39. Nagar B, Bornmann WG, Pellicena P, Schindler T, Veach DR, Miller WT, Clarkson B, Kuriyan J (2002) Crystal structures of the kinase domain of c-abl in complex with the small molecule inhibitors pd173955 and imatinib (sti-571). Cancer Res 62:4236–4243

    CAS  Google Scholar 

  40. Nagar B, Hantschel O, Young MA, Scheffzek K, Veach D, Bornmann W, Clarkson B, Superti-Furga G, Kuriyan J (2003) Structural basis for the autoinhibition of c-abl tyrosine kinase. Cell 112:859–871

    Article  CAS  Google Scholar 

  41. Dar AC, Lopez MS, Shokat KM (2008) Small molecule recognition of c-src via the imatinib-binding conformation. Chem Biol 15:1015–1022

    Article  CAS  Google Scholar 

  42. Jacobs MD, Caron PR, Hare BJ (2008) Classifying protein kinase structures guides use of ligand-selectivity profiles to predict inactive conformations: Structure of lck/imatinib complex. Proteins 70:1451–1460

    Article  CAS  Google Scholar 

  43. Seeliger MA, Nagar B, Frank F, Cao X, Henderson MN, Kuriyan J (2007) C-src binds to the cancer drug imatinib with an inactive abl/c-kit conformation and a distributed thermodynamic penalty. Structure 15:299–311

    Article  CAS  Google Scholar 

  44. Aleksandrov A, Simonson T (2010) Molecular dynamics simulations show that conformational selection governs the binding preferences of imatinib for several tyrosine kinases. J Biol Chem 285:13807–13815

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Pia Rücker and Dr. Holger Dinkel for fruitful discussions, and A. Jens Meiselbach-Wilke for critically reading the manuscript. This work was supported by grants from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Sticht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meiselbach, H., Sticht, H. Effect of the SH3-SH2 domain linker sequence on the structure of Hck kinase. J Mol Model 17, 1927–1934 (2011). https://doi.org/10.1007/s00894-010-0897-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-010-0897-z

Keywords

Navigation