Skip to main content
Log in

Conformational flexibility, binding energy, role of salt bridge and alanine-mutagenesis for c-Abl kinase complex

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Abl kinase plays a decisive role in the mechanism of the most fatal human pathogen chronic mylogenous leukemia (CML). Here, we have carried out a comprehensive study about the conformational flexibility, role of salt bridge and the protein- ligand interaction for this kinase with its well-known inhibitor, Imatinib. We have performed molecular dynamics simulations for conformational behavior, investigated the salt bridges and calculated the binding free energy of Imatinib with MM-PB/SA method for Abl kinase complex. We also explored the role of salt-bridge in the kinase complex and its effect on binding activity of inhibitors. Furthermore, to investigate the importance of those residues which form salt bridges, we mutated them by Alanine with the help of Alanine scanning program. We noticed significant variations in total free energy of Imatinib in all possible mutations. The binding free energy of ligand for kinase receptor was analyzed by molecular mechanics Poission Boltzmann surface area (MM-PB/SA) method. These results suggest that conserved glutamic acid and lysine are necessary for stability of complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rix U, Hantschel O, Durnberger G, Rix LLR, Planyavsky M, Fernbach NV, Kaupe I, Bennett KL, Valent P, Colinge J, Kocher T, Furga GS (2007) Chemical proteomic profiles of the BCR-ABL inhibitors Imatinib, Nilotinib and Dasatinib reveals novel kinases and non kinases targets. Blood 110:4055–4063

    Article  CAS  Google Scholar 

  2. Seeliger MA, Nagar B, Frank F, Cao X, Henderson MN, Kuriyan J (2007) c-Src binds to the cancer drug imatinib with an inactive abl/c-kit conformation and a distributed thermodynamic penalty. Structure 15:299–311

    Article  CAS  Google Scholar 

  3. Deininger MWN, GoldmanJM MJV (2000) The molecular Biology of chronic myeloid leukemia. Blood 96:3343–3356

    CAS  Google Scholar 

  4. Goodsell DS (2005) The molecular Biology of chronic myeloid leukemia. Oncologist 10:758–759

    Article  CAS  Google Scholar 

  5. Nagar B, Hantschel O, Young MA, Scheffzek K, Veach D, Bornmann W, Clarkson B, Superti-Furga G, Kuriyan J (2003) Structural basis for the auto inhibition of c-Abl tyrosine kinase. Cell 112:859–871

    Article  CAS  Google Scholar 

  6. Nagar B (2007) c – Abl Tyrosine Kinase and inhibition by the cancer Drug Imatinib. J Nutr 137:1518S–1523S

    CAS  Google Scholar 

  7. Li W, Miller WT (2006) Role of activation loop tyrosine in regulation of the insulin-like growth factor I receptor tyrosine kinase. J Bio Chem 281:23785–23791

    Article  CAS  Google Scholar 

  8. Emrick MA, Lee T, Starkey PJ, Mumby MC, Resing KA, Ahn NG (2006) The gatekeeper residue controls, auto activation of ERK2 via a pathway of intramolecular connectivity. PNAS 103:18101–18106

    Article  CAS  Google Scholar 

  9. Shan Y, Seelinger MA, Eastwood MP, Frank F, Xu H, Jensen MO, Dror RO, Kuriyan J, Shaw DE (2009) A conserved protonation dependent switch controls drug binding in the Abl kinase. PNAS 106:139–144

    Article  CAS  Google Scholar 

  10. Buettner R, Mesa T, Vulture A, Lee F, Jove R (2008) Inhibition of Src family kinases with dasatinib blocks migration and invasion of human melanoma cells. Mol Cancer Res 6:1766–1774

    Article  CAS  Google Scholar 

  11. Carpinelli P, Ceruti R, Giorgini ML, Cappella P, Gianellini L, Croci V, Degrassi A, Texido G, Rocchetti M, Vianello P, Rusconi L, Storici P, Zugnoni P, Arrigoni C, Soncini C, Alli C, Patton V, Marsiglio A, Ballinari D, Pesenti E, Fancelli D (2007) PHA-739358, a potent inhibitor of Aurora kinases with a selective target inhibition profile relevant to cancer. J Mol Cancer Res 6:3158–3168

    Article  CAS  Google Scholar 

  12. Mol CD, Dougan DR, Schneider TR, Skene RJ, Kraus ML, Scheibe DN, Snell GP, Zou H, Sang BC, Wilson KP (2004) Structural basis for the auto inhibition and STI-571 inhibition of c-Kit tyrosine kinase. J Biol Chem 279:31655–31663

    Article  CAS  Google Scholar 

  13. Nagar B, Bornmann W, Pellicena P, Schindler T, Veach D, Miller WT, Clarkson B, Kuriyan J (2002) Crystal structures of the kinase domain of c-Abl in complex with the small molecule inhibitors PD173955 and Imatinib (STI-571). Cancer Res 62:4236–4243

    CAS  Google Scholar 

  14. Cowan-Jacob SW, Fendrich J, Floersheimer A, Furel P, Liebentanz J, Rummel G, Rheinberger P, Centeleghe M, Fabbro D, Manely PW (2007) Structural bilogy contribution to the discovery of drug to treat chronic myelogenous leukaemia. Acta Cryst D 63:80–93

    Article  Google Scholar 

  15. Tokarski JS, Newitt JA, Chang CHYJ, Cheng JD, Wittekind M, Kiefer SE, Kish K, Lee FYF, Brozillerri R, Lombardo LJ, Xie D, Zhang Y, Klei HE (2006) The structure of dasatinib (BMS-354825) bound to activated Abl kinase domain elucidates its inhibitory activity against Imatinib resistance Abl-Mutant. Cancer research 66:5790–5797

    Article  CAS  Google Scholar 

  16. Denisov VP, Halle B (1996) Protein hydration dynamics in aqueous solution. Faraday Disc 103:227–244

    Article  CAS  Google Scholar 

  17. Bryant RG (1996) The dynamics of water-protein interactions. Annu Rev Biophys Biomol Struct 25:29–53

    Article  CAS  Google Scholar 

  18. Rupley JA, Careri G (1991) Protein hydration and function. Adv Protein Chem 41:37–172

    Article  CAS  Google Scholar 

  19. Meyer E (1992) Internal water molecules and h-bonding in biological macromolecules: a review of structural features with functional implications. Protein Sci 1:1543–1562

    Article  CAS  Google Scholar 

  20. Case DA, Cheatham TE, Daren T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  CAS  Google Scholar 

  21. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  22. Cornell WD, Cieplak P, Bayly CI, Kollman PA (1993) Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation. J Am Chem Soc 115:9620–9631

    Article  CAS  Google Scholar 

  23. Jorgenson WL, Chandrashekhar J, Madura JD, Imprey RW, Klein M (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  Google Scholar 

  24. Izaguirre JA, Catarello DP, Wozanaik JM, Skeel RD (2001) Langevin stabilization of molecular dynamics. J Chem Phys 114:2090–2098

    Article  CAS  Google Scholar 

  25. Berendsen HJC, Postama JPM, van-Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  26. Ryckaert JP, Cicotti G, Barendsen HJC (1977) Numerical integration of the Cartesian equation of motion of a system with constraints: Molecular dynamics of n-alkanes. J Comput Phys 23:327–341

    Article  CAS  Google Scholar 

  27. Humphrey W, Dalke A, Schulten K (1996) VMD – virtual molecular dynamics. J Mol Graph Model 14:33–38

    CAS  Google Scholar 

  28. Pettersen EF, Goddard TD, Haung CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera – A visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  Google Scholar 

  29. Maestro, Schrodinger Inc, USA (2008)

  30. Gohlke H, Case DA (2003) Converging free energy estimates: MM-PB (GB) SA studies on the Protein-Protein Complex Ras-Raf. J Comput Chem 25:238–250

    Article  Google Scholar 

  31. Fogolari F, Brigo A, Molinari H (2003) Protocols for MM/PBSA molecular dynamics simulations of proteins. Biophys J 85:159–166

    Article  CAS  Google Scholar 

  32. Grochowaski P, Trylska J (2007) Continuum molecular electrostatics, salt effects, and counterion binding- a review of the poisson-boltzmann theory and its modifications. Biopolymers 89:93–113

    Article  Google Scholar 

  33. Tsui V, Case DA (2001) Theory and application of generalized born solvation model in macromolecular simulations. Biopolymers 56:271–291

    Google Scholar 

  34. Dubey KD, Ojha RP (2011) Binding free energy calculation with QM/MM hybrid methods for Abl-Kinase inhibitor. J Biol Phys 37:69–78

    Article  CAS  Google Scholar 

  35. Leach AR (2003) Molecular Modeling: Principle and Application, 2nd edn. Prentice Hall

  36. Moreira IS, Fernandes PA, Ramos MJ (2006) Unraveling the importance of protein-protein interaction: application of computational alanine-mutagenesis to the study of the IgG1 streptococcal protein G (C2 fragment) complex. J Phys Chem B 110:10962–10969

    Article  CAS  Google Scholar 

  37. Moreira IS, Fernandes PA, Ramos MJ (2006) Computational alanine scanning mutagenesis, an improved methodological approach. J Comput Chem 28:644–654

    Article  Google Scholar 

  38. Masso M, Lu Z, Vaismann II (2006) Computational mutagenesis of protein structure function correlation. Proteins 64:234–245

    Article  CAS  Google Scholar 

  39. Naim M, Bhat S, Rankin KN, Dennis S, Chowdhury SF, Siddiqi I, Drabik P, Sulea T, Bayly C, Jakalian A, Purisima EO (2007) Solvated interaction energy (SIE) for scoring protein ligand binding affinities. 1. Exploring the parameter space. J Chem Inf Model 47:122–133

    Article  Google Scholar 

  40. Cui Q, Sulea T, Schrag JD, Munger C, Hung MN, Naim M, Cygler M, Purisima EO (2008) Molecular dynamics and solvated interaction energy studies of protein –protein interaction: The MP1-p14 scaffolding complex. Structural biology contribution to tyrosine kinase drug discovery. J Mol Biol 379:787–802

    Article  CAS  Google Scholar 

  41. Pricl S, Fermeglia M, Ferrone M, Tamborini E (2005) T315I- mutated Bcr-Abl in chronic myeloid leukemia and Imatinib: insights from a computational study. Mol Cancer Ther 4:1167–1174

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The partial computational work is carried out at Supercomputing facility for bioinformatics and computational biology, Indian Institute of Technology, New Delhi, India, their support is gratefully acknowledged. Special thanks to Prof. B. Jayaram, coordinator SCFbio, Indian Institute of Technology, New Delhi (IITD) to facilitate the access of supercomputer at IITD. Authors are grateful to Dr. Azara Praveen, Zakir Hussain College of Engineering and Technology, Aligarh Muslim University, Aligarh, for proofing the manuscript. KDD thanks to Council for Scientific and Industrial Research (CSIR) for the award of senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kshatresh Dutta Dubey or Rajendra Prasad Ojha.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1172 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dubey, K.D., Ojha, R.P. Conformational flexibility, binding energy, role of salt bridge and alanine-mutagenesis for c-Abl kinase complex. J Mol Model 18, 1679–1689 (2012). https://doi.org/10.1007/s00894-011-1199-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-011-1199-9

Keywords

Navigation