Skip to main content
Log in

Exploring hydrogen bond in the excited state leading toward intramolecular proton transfer: detailed analysis of the structure and charge density topology along the reaction path using QTAIM

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Excited state intramolecular proton transfer (ESIPT) reaction along the O-H⋅⋅⋅⋅O hydrogen bond of o-hydroxy benzaldehyde (OHBA), methyl salicylate (MS) and salicylic acid (SA) was investigated by ab-initio quantum chemical calculation and theory of atoms and molecules (QTAIM) for the first time. Variation in several geometric as well as QTAIM parameters along the reaction coordinate was monitored in the fully relaxed excited state potential energy curve (PEC) obtained from intrinsic reaction coordinate (IRC) analysis. Although, the excited state barrier height for the forward reaction (∆E #0 ) reduces substantially in all the systems, MS and SA do not show any obvious asymmetry for proton transfer. For MS and SA, the crossover of the bond index as well as the lengths of the participating bonds at the saddle point is assigned due to this symmetry in accordance with bond energy – bond order (BEBO) model, which does not hold true in OHBA both in the ground and excited states. Bond ellipticity, covalent and metallic character were examined for different structures along the reaction path within the QTAIM framework. The QTAIM analysis was found to be able to uniquely distinguish between the ground and excited states of the OHBA molecule as well as both determining the effects on the bonding character of adding different substituent groups and differentiating between the ESIPT reactions in the SA and MS molecules.

In this paper, we report the dynamics and charge density topology of excited state intramolecular proton transfer (ESIPT) process in model systems like o-hydroxy benzaldehyde, salicylic acid and methyl salicylate using ab-initio quantum chemical calculation and also quantum theory of atoms and molecules (QTAIM) using fully relaxed excited state potential energy surface. The later technique has been used for the first time to explore the excited state process

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weller A (1961) Fast reactions of excited molecules. Prog React Kinet 1:189–214

    Google Scholar 

  2. Weller A (1957) Protolytische reaktionen des angeregten acridins. Zeitschrift fur Elektrochemie 61(8):956–961

    CAS  Google Scholar 

  3. Weller A (1955) Über die Fluoreszenz der Salizylsäure und verwandter Verbindungen. Naturwissenschaften 42(7):175–176. doi:10.1007/BF00595299

    Article  CAS  Google Scholar 

  4. Tang KC, Chang MJ, Lin TY, Pan HA, Fang TC, Chen KY, Hung WY, Hsu YH, Chou PT (2011) Fine tuning the energetics of excited-state intramolecular proton transfer (ESIPT): white light generation in a single ESIPT system. J Am Chem Soc 133(44):17738–17745. doi:10.1021/ja2062693

    Article  CAS  Google Scholar 

  5. Xu S, Shao Y, Ma K, Cui Q, Liu G, Wu F, Li M (2011) Fluorescence light-up recognition of DNA nucleotide based on selective abasic site binding of an excited-state intramolecular proton transfer probe. Analyst 136(21):4480–4485. doi:10.1039/C1AN15652G

    Article  CAS  Google Scholar 

  6. Kwon JE, Park SY (2011) Advanced organic optoelectronic materials: harnessing excited-state intramolecular proton transfer (ESIPT) process. Adv Mater 23(32):3615–3642. doi:10.1002/adma.201102046

    Article  CAS  Google Scholar 

  7. Shvadchak VV, Falomir-Lockhart LJ, Yushchenko DA, Jovin TM (2011) Specificity and kinetics of α-synuclein binding to model membranes determined with fluorescent excited state intramolecular proton transfer (ESIPT) probe. J Biol Chem 286(15):13023–13032. doi:10.1074/jbc.M110.204776

    Article  CAS  Google Scholar 

  8. Shono H, Ohkawa T, Tomoda H, Mutai T, Araki K (2011) Fabrication of colorless organic materials exhibiting white luminescence using normal and excited-state intramolecular proton transfer processes. ACS Appl Mater Interfaces 3(3):654–657. doi:10.1021/am200022z

    Article  CAS  Google Scholar 

  9. Kerkines ISK, Petsalakis ID, Theodorakopoulos G, Rebek J (2010) Excited-state intramolecular proton transfer in hydroxyoxime-based chemical sensors. J Phys Chem A 115(5):834–840. doi:10.1021/jp1088433

    Article  Google Scholar 

  10. Zhao J, Ji S, Chen Y, Guo H, Yang P (2011) Excited state intramolecular proton transfer (ESIPT): from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials. Phys Chem Chem Phys. doi:10.1039/C2CP23144A

  11. Sun W, Li S, Hu R, Qian Y, Wang S, Yang G (2009) Understanding solvent effects on luminescent properties of a triple fluorescent ESIPT compound and application for white light emission. J Phys Chem A 113(20):5888–5895. doi:10.1021/jp900688h

    Article  CAS  Google Scholar 

  12. Miyasaka T, Koyama K, Itoh I (1992) quantum conversion and image detection by a bacteriorhodopsin-based artificial photoreceptor. Science 255(5042):342–344. doi:10.1126/science.255.5042.342

    Article  CAS  Google Scholar 

  13. Ernsting NP, Nikolaus B (1986) Dye-laser pulse shortening by transient absorption following excited-state intramolecular proton transfer. Appl Phys B 39(3):155–164. doi:10.1007/BF00697413

    Article  Google Scholar 

  14. Chou P-T, Studer SL, Martinez ML (1991) Practical and convenient 355-nm and 337-nm sharp-cut filters for multichannel raman spectroscopy. Appl Spectrosc 45(3):513–515

    Article  CAS  Google Scholar 

  15. Sengupta PK, Kasha M (1979) Excited state proton-transfer spectroscopy of 3-hydroxyflavone and quercetin. Chem Phys Lett 68(2–3):382–385. doi:10.1016/0009-2614(79)87221-8

    Article  CAS  Google Scholar 

  16. Guo Z-Q, Chen W-Q, Duan X-M (2012) Seven-membered ring excited-state intramolecular proton-transfer in 2-benzamido-3- (pyridin-2-yl)acrylic acid. Dye Pigment 92(1):619–625. doi:10.1016/j.dyepig.2011.06.004

    Article  CAS  Google Scholar 

  17. Formosinho SJ, Arnaut LG (1993) Excited-state proton transfer reactions II. Intramolecular reactions. J Photochem Photobiol A 75(1):21–48. doi:10.1016/1010-6030(93)80158-6

    Article  CAS  Google Scholar 

  18. El-Sayed MA, Barbara P, Nicol M (1991) Michael Kasha - editorial, biographical sketch, summary of research contributions, research associates, and publications list. J Phys Chem 95(25):10215–10220. doi:10.1021/j100178a001

    Article  CAS  Google Scholar 

  19. Zhao G-J, Han K-L (2011) Hydrogen bonding in the electronic excited state. Acc Chem Res. doi:10.1021/ar200135h

  20. Kijak M, Nosenko Y, Singh A, Thummel RP, Waluk J (2007) Mode-selective excited-state proton transfer in 2-(2‘-Pyridyl)pyrrole isolated in a supersonic jet. J Am Chem Soc 129(10):2738–2739. doi:10.1021/ja068109f

    Article  CAS  Google Scholar 

  21. Rambaud C, Oppenländer A, Pierre M, Trommsdorff HP, Vial J-C (1989) Tunneling dynamics of delocalized protons in benzoic acid dimers: a study of the temperature dependence by time and frequency domain optical spectroscopy. Chem Phys 136(2):335–347. doi:10.1016/0301-0104(89)80057-6

    Article  CAS  Google Scholar 

  22. Shida N, Barbara PF, Almlöf JE (1989) A theoretical study of multidimensional nuclear tunneling in malonaldehyde. J Chem Phys 91(7):4061–4072. doi:10.1063/1.456836

    Article  CAS  Google Scholar 

  23. Schwartz BJ, Peteanu LA, Harris CB (1992) Direct observation of fast proton transfer: femtosecond photophysics of 3-hydroxyflavone. J Phys Chem 96(9):3591–3598. doi:10.1021/j100188a009

    Article  CAS  Google Scholar 

  24. Yu W-S, Cheng C-C, Cheng Y-M, Wu P-C, Song Y-H, Chi Y, Chou P-T (2003) Excited-state intramolecular proton transfer in five-membered hydrogen-bonding systems: 2-pyridyl pyrazoles. J Am Chem Soc 125(36):10800–10801. doi:10.1021/ja035382y

    Article  CAS  Google Scholar 

  25. Nagaoka S, Teramae H, Nagashima U (2009) Computational study of excited-state intramolecular-proton-transfer of o-hydroxybenzaldehyde and its derivatives. Bull Chem Soc Jpn 82(5):570–573. doi:10.1246/bcsj.82.570

    Article  CAS  Google Scholar 

  26. Scheiner S (2000) Theoretical studies of excited state proton transfer in small model systems. J Phys Chem A 104(25):5898–5909. doi:10.1021/jp000125q

    Article  CAS  Google Scholar 

  27. Schriever C, Lochbrunner S, Riedle E (2009) Influence of the environment on reaction dynamics: excited state intramolecular proton transfer in the gas phase and in solution. In: Corkum P, Silvestri S, Nelson KA, Riedle E, Schoenlein RW (eds) Ultrafast phenomena XVI. Springer, Heidelberg, pp 508–510

  28. Frisch M, Trucks G, Schlegel H et al. (2004) Gaussian 03, Revision D.01. Gaussian Inc, Wallingford

    Google Scholar 

  29. Laidler KJ (2004) Chemical kinetics, 3rd edn. Pearson Education, New Delhi

    Google Scholar 

  30. Johnston HS, Heicklen J (1962) Tunnelling corrections for unsymmetrical Eckart potential energy barriers. J Phys Chem 66(3):532–533. doi:10.1021/j100809a040

    Article  Google Scholar 

  31. Jogeshwari Devi K, Chandra AK (2011) Kinetics and thermochemistry of the gas-phase reactions of 4-ethylpyridine with OH radical: a DFT study. Comput Theory Chem 965(2–3):268–274. doi:10.1016/j.comptc.2010.12.015

    Article  CAS  Google Scholar 

  32. Bader RFW (1994) Atoms in molecules: a quantum theory. Oxford University Press, USA

    Google Scholar 

  33. Jenkins S, Heggie MI (2000) Quantitative analysis of bonding in 90o partial dislocation in diamond. J Phys Condens Matter 12(49):10325–10333. doi:10.1088/0953-8984/12/49/3

    Article  CAS  Google Scholar 

  34. Jenkins S (2002) Direct space representation of metallicity and structural stability in SiO solids. J Phys Condens Matter 14(43):10251–10263. doi:10.1088/0953-8984/14/43/321

    Article  CAS  Google Scholar 

  35. Koch U, Popelier PLA (1995) Characterization of C-H-O hydrogen bonds on the basis of the charge density. J Phys Chem 99(24):9747–9754. doi:10.1021/j100024a016

    Article  CAS  Google Scholar 

  36. Jenkins S, Morrison I (1999) Characterization of various phases of ice on the basis of the charge density. J Phys Chem B 103(50):11041–11049. doi:10.1021/jp992655w

    Article  CAS  Google Scholar 

  37. Cremer D, Kraka E (1984) A description of the chemical bond in terms of local properties of electron density and energy. Croat Chem Acta 57:1265–1287

    Google Scholar 

  38. Jenkins S, Morrison I (2000) The chemical character of the intermolecular bonds of seven phases of ice as revealed by ab initio calculation of electron densities. Chem Phys Lett 317(1–2):97–102. doi:10.1016/S0009-2614(99)01306-8

    Article  CAS  Google Scholar 

  39. Isaacs ED, Shukla A, Platzman PM, Hamann DR, Barbiellini B, Tulk CA (1999) Covalency of the hydrogen bond in ice: a direct x-ray measurement. Phys Rev Lett 82(3):600–603. doi:10.1103/PhysRevLett.82.600

    Article  CAS  Google Scholar 

  40. Pauling L (1948) The nature of the chemical bond and the structure of molecules and crystals: an introduction to modern structural chemistry. Cornell University Press etc, Ithaca

    Google Scholar 

  41. Silvi B, Gatti C (2000) Direct space representation of the metallic bond. J Phys Chem A 104(5):947–953. doi:10.1021/jp992784c

    Article  CAS  Google Scholar 

  42. Silvi B, Savin A (1994) Classification of chemical bonds based on topological analysis of electron localization functions. Nature 371(6499):683–686. doi:10.1038/371683a0

    Article  CAS  Google Scholar 

  43. Wang Y-G, Wiberg KB, Werstiuk NH (2007) Correlation effects in EOM-CCSD for the excited states: evaluated by AIM localization index (LI) and delocalization index (DI). J Phys Chem A 111(18):3592–3601. doi:10.1021/jp067579t

    Article  CAS  Google Scholar 

  44. Bhatt RN, Sachdev S (1986) Excited states and the metal-insulator transition in monovalent systems. Phys Rev B 34(5):3520–3523. doi:10.1103/PhysRevB.34.3520

    Article  Google Scholar 

  45. Jenkins S, Kirk SR, Cote AS, Ross DK, Morrison I (2003) Dependence of the normal modes on the electronic structure of various phases of ice as calculated by ab initio methods. Can J Phys 81(7):225–231

    Article  CAS  Google Scholar 

  46. Jones H, Curl RF Jr (1972) Microwave spectrum of salicyl aldehyde: structure of the hydrogen bond. J Mol Spectrosc 42(1):65–74. doi:10.1016/0022-2852(72)90144-0

    Article  CAS  Google Scholar 

  47. Sundaralingam M, Jensen LH (1965) Refinement of the structure of salicylic acid. Acta Cryst 18:1053–1058. doi:10.1107/S0365110X65002517

    Article  CAS  Google Scholar 

  48. Nagaoka S, Hirota N, Sumitani M, Yoshihara K (1983) Investigation of the dynamic processes of the excited states of o-hydroxybenzaldehyde and o-hydroxyacetophenone by emission and picosecond spectroscopy. J Am Chem Soc 105(13):4220–4226. doi:10.1021/ja00351a016

    Article  CAS  Google Scholar 

  49. Morgan MA, Orton E, Pimentel GC (1990) Characterization of ground and electronically excited states of o-hydroxybenzaldehyde and its non-hydrogen-bonded photorotamer in 12 K rare gas matrixes. J Phys Chem 94(20):7927–7935. doi:10.1021/j100383a034

    Article  CAS  Google Scholar 

  50. Law KY, Shoham J (1994) Photoinduced proton transfers in methyl salicylate and methyl 2-hydroxy-3-naphthoate. J Phys Chem 98(12):3114–3120. doi:10.1021/j100063a013

    Article  CAS  Google Scholar 

  51. Lahmani F, Zehnacker-Rentien A (1997) Effect of substitution on the photoinduced intramolecular proton transfer in salicylic acid. J Phys Chem A 101(35):6141–6147. doi:10.1021/jp9712516

    Article  CAS  Google Scholar 

  52. Sobolewski AL, Domcke W (1998) Ab initio study of excited-state intramolecular proton dislocation in salicylic acid. Chem Phys 232(3):257–265. doi:10.1016/S0301-0104(98)00110-4

    Article  CAS  Google Scholar 

  53. Mitra S, Tamai N (1998) Femtosecond spectroscopic study on photochromic salicylideneaniline. Chem Phys Lett 282(5–6):391–397. doi:10.1016/S0009-2614(97)01279-7

    Article  CAS  Google Scholar 

  54. de Klerk JS, Bader AN, Ariese F, Gooijer C (2009) High-resolution fluorescence studies on excited-state intra- and intermolecular proton transfer. In: Geddes CD, Lakowicz JR (eds) Reviews in fluorescence 2007. Springer, New York, pp 271–298. doi:10.1007/978-0-387-88722-7_12

    Chapter  Google Scholar 

  55. Truong TN, Truhlar DG (1990) Ab initio transition state theory calculations of the reaction rate for OH + CH4 → H2O + CH3. J Chem Phys 93(3):1761–1769. doi:10.1063/1.459103

    Article  CAS  Google Scholar 

  56. Subotnik JE (2011) Communication: configuration interaction singles has a large systematic bias against charge-transfer states. J Chem Phys 135(7):071104–071104–4. doi: 10.1063/1.3627152

    Google Scholar 

  57. Mitra S, Das R, Bhattacharyya SP, Mukherjee S (1997) Energetic and dynamic aspects of intramolecular proton transfer in 4-Methyl-2,6-diformylphenol: a detailed analysis with AM1 potential energy surfaces. J Phys Chem A 101(3):293–298. doi:10.1021/jp961560g

    Article  CAS  Google Scholar 

  58. Migani A, Blancafort L, Robb MA, DeBellis AD (2008) An extended conical intersection seam associated with a manifold of decay paths: excited-state intramolecular proton transfer in o-hydroxybenzaldehyde. J Am Chem Soc 130(22):6932–6933. doi:10.1021/ja8013924

    Article  CAS  Google Scholar 

  59. Lochbrunner S, Schultz T, Schmitt M, Shaffer JP, Zgierski MZ, Stolow A (2001) Dynamics of excited-state proton transfer systems via time-resolved photoelectron spectroscopy. J Chem Phys 114(6):2519–2522. doi:10.1063/1.1345876

    Article  CAS  Google Scholar 

  60. Herek JL, Pedersen S, Bañares L, Zewail AH (1992) Femtosecond real–time probing of reactions. IX. Hydrogen–atom transfer. J Chem Phys 97(12):9046–9061. doi:10.1063/1.463331

    Article  CAS  Google Scholar 

  61. Johnston HS (2007) Large tunnelling corrections in chemical reaction rates. In: Prigogine I (ed) Advances in chemical physics 3. Wiley, pp 131–170. doi: 10.1002/9780470143490.ch4

  62. Johnston HS, Parr C (1963) Activation energies from bond energies. I. Hydrogen transfer reactions. J Am Chem Soc 85(17):2544–2551. doi:10.1021/ja00900a002

    Article  CAS  Google Scholar 

  63. Maity DK, Bhattacharyya SP (1990) The behavior of quantum chemical bond order in the vicinity of a saddle point on the reaction path. J Am Chem Soc 112(8):3223–3225. doi:10.1021/ja00164a060

    Article  CAS  Google Scholar 

  64. Keith TA (2010) AIMAll version 10.09.12. http://aim.tkgristmill.com.

  65. Ayers PW, Jenkins S (2009) An electron-preceding perspective on the deformation of materials. J Chem Phys 130(15):154104–154104–11. doi: 10.1063/1.3098140

    Google Scholar 

Download references

Acknowledgments

Thanks are due to Board of Research in Nuclear Sciences (BRNS) and Council of Scientific and Industrial Research (CSIR), Govt. of India for providing financial assistance to SM [project no. 2009/37/26/BRNS/1900] and AKC [project No. 01(2494)/11/EMR-II], respectively. The Hundred Talents Foundation of Hunan Province is gratefully acknowledged for the support of SJ and SRK.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sivaprasad Mitra or Samantha Jenkins.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1S

(A) Variation of different parameters during the E→K conversion for OHBA in the ground (a) and excited (b) states. The bond lengths and angles are designated by r and θ, respectively. The atom numbering is shown in Scheme 1. The variation of different parameters in the excited state of SA (B) and MS (C) are also shown (PPT 168 kb)

Fig. 1S

(PPT 165 kb)

Fig. 1S

(PPT 146 kb)

Fig. 1S

(PPT 146 kb)

Fig. 2S

The molecular graphs from QTAIM calculation of SA in the excited state. See caption of Fig. 3, for other details (PPT 586 kb)

Fig. 3S

The molecular graphs from QTAIM calculation of MS in the excited state. See caption of Fig. 3, for other details (PPT 513 kb)

Fig. 4S

The variation of the ratio |λ1|/λ3 with reaction pathway coordinate of different O-H and C-O BCPs in ground and excited sates (mentioned as GS and ES, respectively). See Scheme 1 for atom numbering (PPT 333 kb)

Fig. 5S

The variation of H(r b) with reaction pathway coordinate of different O-H and C-O bonds in ground and excited sates (mentioned as GS and ES, respectively). See Scheme 1 for atom numbering (PPT 349 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitra, S., Chandra, A.K., Gashnga, P.M. et al. Exploring hydrogen bond in the excited state leading toward intramolecular proton transfer: detailed analysis of the structure and charge density topology along the reaction path using QTAIM. J Mol Model 18, 4225–4237 (2012). https://doi.org/10.1007/s00894-012-1408-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00894-012-1408-1

Keywords

Navigation