Skip to main content
Log in

Sequence and 3D structure based analysis of TNT degrading proteins in Arabidopsis thaliana

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

TNT, accidentally released at several manufacturing sites, contaminates ground water and soil. It has a toxic effect to algae and invertebrate, and chronic exposure to TNT also causes harmful effects to human. On the other hand, many plants including Arabidopsis thaliana have the ability to metabolize TNT either completely or at least to a reduced less toxic form. In A. thaliana, the enzyme UDP glucosyltransferase (UDPGT) can further conjugate the reduced forms 2-HADNT and 4-HADNT (2-hydroxylamino-4, 6- dinitrotoluene and 4-hydroxylamino-2, 6- dinitrotoluene) of TNT. Based on the experimental analysis, existing literature and phylogenetic analysis, it is evident that among 107 UDPGT proteins only six are involved in the TNT degrading process. A total of 13 UDPGT proteins including five of these TNT degrading proteins fall within the same group of phylogeny. Thus, these 13 UDPGT proteins have been classified into two groups, TNT-degrading and TNT-non-degrading proteins. To understand the differences in TNT-degrading capacities; using homology modeling we first predicted two structures, taking one representative sequence from both the groups. Next, we performed molecular docking of the modeled structure and TNT reduced form 2-hydroxylamino-4, 6- dinitrotoluene (2-HADNT). We observed that while the Trp residue located within the active site region of the TNT- degrading protein showed π-Cation interaction; such type of interaction was absent in TNT-non-degrading protein, as the respective Trp residue lay outside of the pocket in this case. We observed the conservation of this π-Cation interaction during MD simulation of TNT–degrading protein. Thus, the position and the orientation of the active site residue Trp could explain the presence and absence of TNT-degrading capacity of the UDPGT proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burken JG (2004) Uptake and metabolism of organic compounds: green-liver model. In: McCutcheon SC, Schnoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, Hoboken. doi:10.1002/047127304X.ch2

    Google Scholar 

  2. Meharg AA, Dennis GR, Caimey JWG (1997) Biotransformation of 2, 4, 6-trinitrotoluene (TNT) by Ecyomycorrhizal basidiomycete. Chemosphere 35:513–521

    Article  CAS  Google Scholar 

  3. Hannink NK, Rossera SJ, Brucea NC (2002) Phytoremediation of explosives. Crit Rev Plant Sci 165:285–290

    Google Scholar 

  4. Nyanhongoa GS, Aicherniga N, Ortnera M et al. (2009) Incorporation of 2, 4, 6-trinitrotoluene (TNT) transforming bacteria into explosive formulations. J Hazard Mater 165:285–290

    Google Scholar 

  5. Ekman DR, Lorenz WW, Przybyla AE, Wolfe NL et al. (2003) Analysis of transcriptome responses in Arabidopsis roots exposed to 2, 4, 6-trinitrotoluene. Plant Physiol 133:1397–1406

    Article  CAS  Google Scholar 

  6. Sens C, Scheidemann P, Klunk A, Werner D (1998) Distribution of 14C TNT and derivatives in different biochemical compartments of Phaseolus vulgaris. Environ Sci Pollut Res 5:202–208

    Article  CAS  Google Scholar 

  7. Coleman JOD, Blake-Kalff MMA, Emyr Davies TG (1997) Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci 2:144–151

    Article  Google Scholar 

  8. Bhadra R, Wayment DG, Hughes JB, Shanks JV (1999) Confirmation of conjugation processes during TNT metabolism by axenic plant roots. Environ Sci Technol 33:446–452

    Article  CAS  Google Scholar 

  9. Subramanian M, Oliver DJ, Shanks JV (2006) TNT phytotransformation pathway characteristics in Arabidopsis: role of aromatic hydroxylamines. Biotechnol Process 22:208–216

    Article  CAS  Google Scholar 

  10. Vila M, Pascal-Lorber S, Rathahao E, Debrauwer L, Canlet C et al. (2005) Metabolism of [14C]-2,4,6-trinitrotoluene in tobacco cell suspension cultures. Environ Sci Technol 39:663–672

    Google Scholar 

  11. Wayment DG, Bhadra R, Lauritzen J, Hughes JB, Shanks JV (1999) A transient study of the formation of conjugates during TNT metabolism by plant tissues. Int J Phytoremed 1:227–239

    Article  CAS  Google Scholar 

  12. Brazier-Hicks M, Offen WA, Gershater MC, Revett TJ, Lim EK et al. (2007) Characterization and engineering of the bifunctional N- and O–glucosyltransferase involved in xenobiotic metabolism in plants. Proc Natl Acad Sci U S A 104:20238–20243

    Google Scholar 

  13. Krieger CJ, Zhang P, Mueller LA et al. (2004) MetaCyc: a multiorganism database of metabolic pathways and enzymes. Nucleic Acids Res 34:D511–D516

    Google Scholar 

  14. Ross J, Li Y, Lim EK, Bowles DJ (2001) Higher plant glycosyltransferases. Genome Biology 2(2): reviews 3004.1–3004.6

  15. Felsenstein J (2005) PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

    Google Scholar 

  16. Gandia HF, Lorenz A, Larson T et al. (2008) Detoxification of the explosive 2, 4, 6-trinitrotoluene in Arabidopsis: discovery of bifunctional O- and C-glucosyltransferases. Plant J 56(6):963–974

    Article  CAS  Google Scholar 

  17. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2006) GenBank. Nucleic Acids Res 34:D16–D20

    Article  CAS  Google Scholar 

  18. Thompson JD, Gibson TJ, Higgins DG (2002) Multiple Sequence Alignment Using ClustalW and ClustalX. Curr Protoc Bioinforma 2.3.1–2.3.22

  19. Bateman A, Coin L, Durbin R et al. (2004) The Pfam protein families’ database. Nucleic Acids Res 32:D138–D141

    Article  CAS  Google Scholar 

  20. Bairoch A (1992) PROSITE: a dictionary of sites and patterns in proteins. Nucleic Acids Res 20:2013–2018

    Article  CAS  Google Scholar 

  21. Choudhury A, Lahiri A (2008) TRABAS: a database for transcription regulation by ABA signalling. Silico Biol 8(5–6):511–516

    CAS  Google Scholar 

  22. Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. PNAS USA 95:14863–14868

    Article  CAS  Google Scholar 

  23. Saldanha AJ (2004) Java Treeview—extensible visualization of microarray data. Bioinformatics 20(17):3246–3248

    Article  CAS  Google Scholar 

  24. Altschul SF (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  Google Scholar 

  25. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  CAS  Google Scholar 

  26. Fiser A, Šali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491

    Article  CAS  Google Scholar 

  27. Sander P, Szilárd P, Roland S et al. (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854

    Google Scholar 

  28. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  29. Miyamoto S, Kollman PA (1992) SETTLE: ananalytical version of the SHAKE and RATTLE algorithm for rigid water models. J Comput Chem 13:952–962

    Article  CAS  Google Scholar 

  30. Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular-dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  31. Mark JA, Jill EG (2011) Optimization of parameters for molecular dynamics simulation using smooth particle-mesh Ewald in GROMACS 4.5. J Comput Chem 32(9):2031–2040

    Article  CAS  Google Scholar 

  32. Colovos C, Yeates TO (1993) Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci 2:1511–1519

    Article  CAS  Google Scholar 

  33. Lüthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356:83–85

    Article  Google Scholar 

  34. Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291

    Article  CAS  Google Scholar 

  35. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein–ligand docking using GOLD. Proteins 52:609–623

    Article  CAS  Google Scholar 

  36. Schrödinger LLC (2010) PyMol: the PyMOL molecular graphics system, Version 1.5.0.4. Schrödinger, LLC, Portland

  37. Andrew CW, Roman AL, Janet MT (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8(2):127–134

    Article  Google Scholar 

  38. Pradman KQ, Boopathy R, Elizabeth B (2005) Substrate-induced conformational changes in glycosyltransferases. TRENDS Biochem Sci 30(1):53–62

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author AB acknowledges UGC, RFSMS, and Department of Biophysics, Molecular Biology and Bioinformatics for the financial support and Rahul Shubhra Mandal is thankful to ICMR [extramural project (IRIS ID: 2013-1551G)] for funding. We also thank the reviewers for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudip Kundu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

894_2014_2174_MOESM1_ESM.doc

All the supplementary data (Supplementary Tables T1-T3, Supplementary Figs. S1-S8) is provided as a single doc file entitled Supplementary_data.doc. (DOC 2487 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacherjee, A., Mandal, R.S., Das, S. et al. Sequence and 3D structure based analysis of TNT degrading proteins in Arabidopsis thaliana . J Mol Model 20, 2174 (2014). https://doi.org/10.1007/s00894-014-2174-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2174-z

Keywords

Navigation