Skip to main content
Log in

Molecular design of donor-acceptor dyes for efficient dye-sensitized solar cells I: a DFT study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Dye-sensitized solar cells (DSSCs) have drawn great attention as low cost and high performance alternatives to conventional photovoltaic devices. The molecular design presented in this work is based on the use of pyran type dyes as donor based on frontier molecular orbitals (FMO) and theoretical UV-visible spectra in combination with squaraine type dyes as an acceptor. Density functional theory has been used to investigate several derivatives of pyran type dyes for a better dye design based on optimization of absorption, regeneration, and recombination processes in gas phase. The frontier molecular orbital (FMO) of the HOMO and LUMO energy levels plays an important role in the efficiency of DSSCs. These energies contribute to the generation of exciton, charge transfer, dissociation and exciton recombination. The computations of the geometries and electronic structures for the predicted dyes were performed using the B3LYP/6–31+G** level of theory. The FMO energies (EHOMO, ELUMO) of the studied dyes are calculated and analyzed in the terms of the UV- visible absorption spectra, which have been examined using time-dependent density functional theory (TD-DFT) techniques. This study examined absorption properties of pyran based on theoretical UV- visible absorption spectra, with comparisons between TD-DFT using B3LYP, PBE, and TPSSH functionals with 6–31+G (d) and 6–311++G** basis sets. The results provide a valuable guide for the design of donor-acceptor (D-A) dyes with high molar absorptivity and current conversion in DSSCs. The theoretical results indicated 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran dye (D2-Me) can be effectively used as a donor dye for DSSCs. This dye has a low energy gap by itself and a high energy gap with squaraine acceptor type dye, the design that reduces the recombination and improves the photocurrent generation in solar cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vlachopoulos N, Liska P, Augustynski J, Grätzel M (1988) Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films. J Am Chem Soc 110:1216–1260

    Article  CAS  Google Scholar 

  2. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal titanium dioxide films. Nature 353:737–740

    Article  Google Scholar 

  3. Smestad G, Bignozzi C, Argazzi R (2004) Testing of dye sensitized TiO2 solar cells I: experimental photocurrent output and conversion efficiencies. Sol Energy Mater Sol Cells 53:259–272

    Google Scholar 

  4. Hagfeldt A, Grätzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68

    Article  CAS  Google Scholar 

  5. Kay A, Grätzel M (1996) Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol Energy Mater Sol Cells 44:99–117

    Article  CAS  Google Scholar 

  6. Kalyanasundaram K, Grätzel M (1998) Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coord Chem Rev 177:347–414

    Article  CAS  Google Scholar 

  7. Hagfeldt A, Grätzel M (2000) Molecular photovoltaics. Acc Chem Res 33:269–277

    Article  CAS  Google Scholar 

  8. Grätzel M (2003) Dye-sensitized solar cells. J Photochem Photobiol C Photochem Rev 4:145–153

    Article  Google Scholar 

  9. Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Grätzel M (2005) Combined experimental and DFT-TD-DFT computational study of photoelectrochemical cell ruthenium sensitizers. J Am Chem Soc 127:16835–16848

    Article  CAS  Google Scholar 

  10. Kafafy H, Wu H, Peng M, Hu H, Yan K, El-Shishtawy R Mm, Zou D (2014) Steric and solvent effect in dye-sensitized solar cells utilizing phenothiazine-based dye. Int J Photoenergydoi:10.1155/2014/548914

  11. Wang ZS, Hara K, Danoh Y, Kasada C, Shinpo A, Suga S, Arakawa H, Sugihara H (2005) Photophysical and (photo) electrochemical properties of a coumarin Dye. J Phys Chem B 109:3907–3914

    Article  CAS  Google Scholar 

  12. Wang ZS, Cui Y, Hara K, Dan-oh Y, Kasada C, Shinpo A (2007) A high-light-harvesting-efficiency coumarin dye for stable dye-sensitized solar cells. Adv Mater 19:1138–1141

    Article  CAS  Google Scholar 

  13. Alex S, Santhosh U, Das S, Papadodima O, Chatziioannou A, Patrinou-Georgoula M, Kolisis FN, Pletsa V, Guialis A (2005) Dye sensitization of nanocrystalline TiO2: enhanced efficiency of unsymmetrical versus symmetrical squaraine dyes. J Photochem Photobiol A 172:63–71

    Article  CAS  Google Scholar 

  14. Burke A, Schmidt-Mende L, Ito S, Grätzel M (2007) A novel blue dye for near-IR “dye-sensitized” solar cell applications. Chem Commun 3:234–236

    Article  Google Scholar 

  15. Howie WH, Claeyssens F, Miura H, Peter LM (2008) Characterization of solid-state dye-sensitized solar cells utilizing high absorption coefficient metal-free organic dyes. J Am Chem Soc 130:1367–1375

    Article  CAS  Google Scholar 

  16. Horiuchi T, Miura H, Sumioka K, Uchida S (2004) High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. J Am Chem Soc 126:12218–12219

    Article  CAS  Google Scholar 

  17. Campbell WM, Burrell AK, Officer DL, Jolley KW (2004) Porphyrins as light harvesters in the dye-sensitized TiO2 solar cell. Coord Chem Rev 248:1363–1379

    Article  CAS  Google Scholar 

  18. Chen Z, Li F, Huang C (2007) Organic D-π-A dyes for dye-sensitized solar cell. Curr Org Chem 11:1241–1258

    Article  CAS  Google Scholar 

  19. Walsh PJ, Gordon KC, Officer DL, Campbell WM (2006) A DFT study of the optical properties of substituted Zn(II)TPP complexes. J Mol Struct (THEOCHEM) 759:17–24

    Article  CAS  Google Scholar 

  20. Vyas S, Hadad CM, Modarelli DA (2008) A computational study of the ground and excited state structure and absorption spectra of free-base N-confused porphine and free-base N-confused tetraphenylporphyrin. J Phys Chem A 112:6533–6549

    Article  CAS  Google Scholar 

  21. Balanay MP, Kim DH (2008) DFT/TD-DFT molecular design of porphyrin analogues for use in dye-sensitized solar cells. Phys Chem Chem Phys 10:5121–5127

    Article  CAS  Google Scholar 

  22. Liu T, Zhang HX, Zhou X, Xia BH (2008) Theoretical studies on [Ru(bpy)2(NN)]2+ [NN = hydrazone and azine]: ground- and excited-state geometries, electronic structures, absorptions, and phosphorescence mechanisms. Eur J Inorg Chem 2008:1268–1276

    Article  Google Scholar 

  23. Liu Z (2008) Theoretical studies of natural pigments relevant to dye-sensitized solar cells. J Mol Struct (THEOCHEM) 862:44–48

    Article  CAS  Google Scholar 

  24. Balanay MP, Kim DH (2009) Structures and excitation energies of Zn–tetraarylporphyrin analogues: a theoretical study. J Mol Struct (THEOCHEM) 910:20–26

    Article  CAS  Google Scholar 

  25. Minaev BF, Baryshnikov GV, Slepets AA (2012) Structure and spectral properties of triphenylamine dye functionalized with 3,4 propylenedioxy thiophene. Opt Spektrosk 112:899–905

    Article  Google Scholar 

  26. Baryshnikov GV, Minaev BF, Myshenko EV, Minaeva VA (2013) Structure and electronic absorption spectra of isotruxene dyes for dye sensitized solar cells: investigation by the DFT, TD-DFT, and QTAIM methods. Opt Spektrosk 115:555–562

    Article  Google Scholar 

  27. Baryshnikova GV, Minaeva BF, Minaeva VA, Ning Z, Zhang Q (2012) Structure and spectral properties of truxene dye S5. Opt Spektrosk 112:193–199

    Google Scholar 

  28. Minaev BF, Gleb VB, Minaeva VA (2011) Electronic structure and spectral properties of the triarylamine-dithienosilole dyes for efficient organic solar cells. Dyes Pigments 92:531–536

    Article  Google Scholar 

  29. Marques MAL, Gross EKU (2004) Time-dependent density-functional theory. Annu Rev Phys Chem 55:427–455

    Article  CAS  Google Scholar 

  30. Samuel GA, Jason P, Joshi P, Qiquan Q, Youngjae Y (2004) New pyran dyes for dye-sensitized solar cells. J Photochem Photobiol A Chem 224:116–122

    Google Scholar 

  31. Zhidan T, Yunchang L, Baozhu T, Jinlong Zh (2013) Synthesis and proton-induced fluorescence “OFF–ON” switching of a new D-p-A type pyran dye. Res Chem Intermed

  32. Gerasimenkoa A Yu, Podgaetsky V M, Krasovsky V I, Lugovsky A P (2009) Optical Memory and Neural Networks. (Information Optics) 18:218–222

  33. Cui Y, Jiancan Y, Gao J, Wang Z, Qian G (2009) Synthesis and luminescence behavior of inorganic–organic hybrid materials covalently bound with pyran-containing dyes. Sol gel Sci Technol 52:362–369

    Article  CAS  Google Scholar 

  34. Kim JH, Lee H (2002) Synthesis, electrochemistry, and electroluminescence of novel red-emitting poly(p-phenylenevinylene) derivative with 2-pyran-4-ylidenemalononitrile obtained by the heck reaction. Chem Mater 14:2270–2275

    Article  CAS  Google Scholar 

  35. Peng Q, Lu Z Y, Huang Y, Xie M G, Han S H, Peng J B, Cao Y (2004) Synthesis and characterization of new red-emitting polyfluorene derivatives containing electron-deficient 2-pyran-4-ylidene-malononitrile moieties, Macromolecules 260–266

  36. Son YA, Gwon SY, Lee SY, Kim SH (2010) Synthesis and property of solvatochromic fluorophore based on D-pi-A molecular system: 2-{[3-Cyano-4-(N-ethyl-N-(2-hydroxyethyl)amino)styryl]-5,5-dimethylfuran-2(5H)-ylidene}malononitrile dye. Spectrochim Acta A Mol Biomol Spectrosc 75:225–229

    Article  Google Scholar 

  37. Xue JLH, Gu X, Yang Z, Xu B, Tian W (2009) Efficient bulk-heterojunction solar cells based on a symmetrical D-pi-A-pi-D organic dye molecule. J Phys Chem C 113:12911–12917

    Article  CAS  Google Scholar 

  38. Furche F, Burke K (2005) Time-dependent density functional theory in quantum chemistry. In: Spellmeyer A (ed) Annual reports in computational chemistry, vol 1. Elsevier, Amsterdam, pp 19–30

  39. Burke K, Gross EKU (1998) A guided tour of time-dependent density functional theory. In: Joubert A (ed) Density functionals: theory and applications. Springer, Berlin

  40. Gross EKU, Aobson JF, Petersilka M (1996) Density functional theory of time-dependent phenomena. Top Curr Chem 181:81–172

    Article  CAS  Google Scholar 

  41. Luo Y, Jonsson D, Norman P, Ruud K, Vahtras O, Minaev B, Ågre H, Rizzo A, Mikkelsen KV (1998) Some recent developments of high-order response theory. Int J Quant Chem 70:219–239

    Article  CAS  Google Scholar 

  42. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Montgomery J A, Jr, Vreven T, Kudin K N, Burant J C (2009) Gaussian 03; Gaussian Inc, Wallingford, CT

  43. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  44. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  45. Perdew JP, Burke K, Ernzerhof M (1997) Generalized gradient approximation made simple. Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  46. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  47. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170

    Article  CAS  Google Scholar 

  48. Perdew JP, Tao J, Staroverov VN, Scuseria GEJ (2004) Chem Phys 120:6898–6911

    Article  CAS  Google Scholar 

  49. Perdew JP, Kurth S, Zupan A, Blaha P (1999) Phys Rev Lett 82:2544–2547

    Article  CAS  Google Scholar 

  50. Wu J, Hagelberg F, Dinadayalane TC, Leszczynska D, Leszczynski J (2011) Do stone–wales defects alter the magnetic and transport properties of single-walled carbon nanotubes? J Phys Chem C 115:22232–22241

    Article  CAS  Google Scholar 

  51. Nueesch F, Zuppiroli L, Berner D, Ma C, Wang X, Cao Y, Zhang B (2004) Space charge and polarization effects upon doping organic light-emitting diodes with pyran-containing donor-acceptor molecules. Res Chem Intermed 30:495–507

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This Project was funded by the King Abdulaziz City for Science and Technology (KACST) under grant number 11-ENE1531-03. The authors, therefore, acknowledge with thanks KACST for support for Scientific Research. Also, the authors appreciate the kind cooperation provided by the Deanship of Scientific Research (DSR), King Abdulaziz University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reda M. El-Shishtawy or Shaaban A. K. Elroby.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. 1S

(DOCX 520 kb).

Fig. 2S

(DOCX 234 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Shishtawy, R.M., Asiri, A.M., Aziz, S.G. et al. Molecular design of donor-acceptor dyes for efficient dye-sensitized solar cells I: a DFT study. J Mol Model 20, 2241 (2014). https://doi.org/10.1007/s00894-014-2241-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2241-5

Keywords

Navigation