Skip to main content
Log in

Theoretical study on alkali-metal doped N3H3 complexes: an in-depth understanding of the origin of electride and alkalide and their large nonlinear optical properties

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

By doping the model complexant N3H3 with one or two lithium atoms, the geometrical and electronic structures as well as static electric properties of the resulting Li(N3H3), (N3H3)Li’ and Li(N3H3)Li’ complexes can be explored using the B3LYP, BHandHLYP, CAM-B3LYP and MP2 methods. All three complexes, especially Li(N3H3), were found to have large first hyperpolarizabilities (β 0). Meanwhile, Li(N3H3) and Li(N3H3)Li’ exhibited electride and alkalide characteristics, respectively. The dependance of electric properties of alkalide Li(N3H3)Li’ on the alkali atoms involved and the complexant layer number were revealed by investigating the related M(N3H3)Li’ and Li(N3H3)M’ (M = Na and K), and Li(N3H3) n Li’ (n = 2, 3) systems. Note that the β 0 value of alkalide M(N3H3)M’ increased not only with the increasing atomic number of the M’ anion but also with that of the M+ cation, which differs from previously reported cases. In addition, the electric properties of the Li(N3H3)Li’ alkalide were enhanced by increasing the complexant layers. However, it was found that both the complexant–complexant and the complexant–Li’ interactions reduced with the addition of N3H3 layers, so no stable structures were found for larger Li(N3H3) n Li’ complexes.

Geometrical and electronic structures as well as static electric properties of Li(N3H3), (N3H3)Li’ and Li(N3H3)Li’ complexes were explored using B3LYP, BHandHLYP, CAM-B3LYP and MP2 methods

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Eaton DF (1991) Nonlinear optical materials. Science 253:281–287

    Article  CAS  Google Scholar 

  2. Cheng WD, Xiang KH, Pandey R, Pernisz UC (2000) Calculations of linear and nonlinear optical properties of H-Silsesquioxanes. J Phys Chem B 104:6737–6742

    Article  CAS  Google Scholar 

  3. Marder SR, Torruellas WE, Blanchard-Desce M, Ricci V, Stegeman GI, Gilmour S, Brédas JL, Li J, Bublitz GU, Boxer SG (1997) Large molecular third-order optical nonlinearities in polarized carotenoids. Science 276:1233–1236

    Article  CAS  Google Scholar 

  4. Lacroix PG, Clément R, Nakatani K, Zyss J, Ledoux I (1994) Stilbazolium-MPS3 nanocomposites with large second-order optical nonlinearity and permanent magnetization. Science 263:658–660

    Article  CAS  Google Scholar 

  5. Ichida M, Sohda T, Nakamura A (2000) Third-order nonlinear optical properties of C60CT complexes with aromatic amines. J Phys Chem B 104:7082–7084

    Article  CAS  Google Scholar 

  6. Geskin VM, Lambert C, Brédas J-L (2003) Origin of high second- and third-order nonlinear optical response in ammonio/borato diphenylpolyene zwitterions the remarkable role of polarized aromatic groups. J Am Chem Soc 125:15 651–15 658

    Article  CAS  Google Scholar 

  7. Champagne B, Spassova M, Jadin J-B, Kirtman B (2002) Ab initioinvestigation of doping-enhanced electronic and vibrational second hyperpolarizability of polyacetylene chains. J Chem Phys 116:3935–3946

    Article  CAS  Google Scholar 

  8. Bouder TL, Maury O, Bondon A, Costuas K, Amouyal E, Ledoux I, Zyss J, Bozec HL (2003) Synthesis, photophysical and nonlinear optical properties of macromolecular architectures featuring octupolar tris(bipyridine) ruthenium(II) moieties: evidence for a supramolecular self-ordering in a dentritic structure. J Am Chem Soc 125:12284–12299

    Article  Google Scholar 

  9. Avramopoulos A, Reis H, Li J, Papadopoulos MG (2004) The dipole moment, polarizabilities, and first hyperpolarizabilities of HArF. A computational and comparative study. J Am Chem Soc 126:6179–6184

    Article  CAS  Google Scholar 

  10. Long NJ, Williams CK (2003) Metal alkynyl δ complexes: synthesis and materials. Angew Chem Int Ed 42:2586–2617

    Article  CAS  Google Scholar 

  11. Datta A, Terenziani F (2006) Painelli a cooperative interactions in supramolecular aggregates: linear and nonlinear responses in calix[4]arenes. Chem Phys Chem 7:2168–2174

    CAS  Google Scholar 

  12. Vance FW, Hupp JT (1999) Probing the symmetry of the nonlinear optic chromophore Ru(trans-4,4-diethylaminostyryl-2,2′-bipyridine)3 2+: insight from polarized hyper-rayleigh scattering and electroabsorption (stark) spectroscopy. J Am Chem Soc 121:4047–4053

    Article  CAS  Google Scholar 

  13. Inerbaev TM, Belosludov RV, Mizuseki H, Takahashi M, Kawazoe Y (2006) First excited state properties and static hyperpolarizability of Ruthenium(II) ammine complexes. J Chem Theory Comput 2:1325–1334

    Article  CAS  Google Scholar 

  14. Kishi R, Nakano M, Ohta S, Takebe A, Nate M, Takahashi H, Kubo T, Kamada K, Ohta K, Champagne B, Botek E (2007) Finite-field spin-flip configuration interaction calculation of the second hyperpolarizabilities of singlet diradical systems. J Chem Theory Comput 3:1699–1707

    Article  CAS  Google Scholar 

  15. Liu ZB, Zhou ZJ, Li Y, Li ZR, Wang R, Li QZ, Li Y, Jia FY, Wang YF, Li ZJ, Cheng JB, Sun CC (2010) Push–pull electron effects of the complexant in a Li atom doped molecule with electride character: a new strategy to enhance the first hyperpolarizability. Phys Chem Chem Phys 12:10562–10568

    Article  CAS  Google Scholar 

  16. Nakano M, Ohta S, Tokushima K, Kishi R, Kubo T, Kamada K, Ohta K, Champagne B, Botek E, Takahashi H (2007) Second hyperpolarizability (γ) of singlet diradical system: dependence of γ on the diradical character. Chem Phys Lett 443:95–101

    Article  CAS  Google Scholar 

  17. Xu HL, Wang FF, Chen W, Yu GT (2011) The complexant shape effect on first(hyper)polarizability of alkalides Li+(NH2CH3)4M (M = Li, Na, and K). Int J Quantum Chem 111:3174–3183

    Article  CAS  Google Scholar 

  18. Garcia-Borràs M, Solà M, Luis JM, Kirtman B (2012) Electronic and vibrational nonlinear optical properties of five representative electrides. J Chem Theory Comput 8:2688–2697

    Article  Google Scholar 

  19. Zhang CC, Xu HL, Hu YY, Sun SL, Su ZM (2011) Quantum chemical research on structures, linear and nonlinear optical properties of the Li@n-acenes salt (n = 1, 2, 3, and 4). J Phys Chem A 115:2035–2040

    Article  CAS  Google Scholar 

  20. Hu YY, Sun SL, Zhong RL, Xu HL, Su ZM (2011) Novel trumpet-shaped conjugation bridge (carbon nanocone) for nonlinear optical materials. J Phys Chem C 115:18545–18551

    Article  CAS  Google Scholar 

  21. Kang H, Facchetti A, Jiang H, Cariati E, Righetto S, Ugo R, Zuccaccia C, Macchioni A, Stern CL, Liu ZF, Ho ST, Brown EC, Ratner MA, Marks TJ (2007) Ultralarge hyperpolarizability twisted π-electron system electro-optic chromophores: synthesis, solid-state and solution-phase structural characteristics, electronic structures, linear and nonlinear optical properties, and computational studies. J Am Chem Soc 129:3267–3286

    Article  CAS  Google Scholar 

  22. Xu HL, Li ZR, Wu D, Wang BQ, Li Y, Gu FL, Aoki Y (2007) Structures and large NLO responses of new electrides: Li-doped fluorocarbon chain. J Am Chem Soc 129:2967–2970

    Article  CAS  Google Scholar 

  23. Li ZJ, Wang FF, Li ZR, Xu HL, Huang XR, Wu D, Chen W, Yu GT, Gu FL, Aoki Y (2009) Large static first and second hyperpolarizabilities dominated by excess electron transition for radical ion pair salts M2 +TCNQ(M = Li, Na, K). Phys Chem Chem Phys 11:402–408

    Article  CAS  Google Scholar 

  24. Li Y, Li ZR, Wu D, Li RY, Hao XY, Sun CC (2004) An ab initio prediction of the extraordinary static first hyperpolarizability for the electron-solvated cluster (FH)2{e}(HF). J Phys Chem B 108:3145–3148

    Article  CAS  Google Scholar 

  25. Chen W, Li ZR, Wu D, Gu FL, Hao XY, Wang BQ, Li RJ, Sun CC (2004) The static polarizability and first hyperpolarizability of the water trimeranion: ab initio study. J Chem Phys 121:10489–10494

    Article  CAS  Google Scholar 

  26. Redko MY, Vlassa M, Jackson JE, Misiolek AW, Huang RH, Dye JL (2002) “Inverse sodium hydride”: a crystalline salt that contains H+ and Na. J Am Chem Soc 124:5928–5929

    Article  CAS  Google Scholar 

  27. Kim J, Ichimura AS, Huang RH, Redko M, Phillips RC, Jackson JE, Dye JL (1999) Crystalline salts of Naand K (alkalides) that are stable at room temperature. J Am Chem Soc 121:10666–10667

    Article  CAS  Google Scholar 

  28. Dye JL, Wagner MJ, Overney G, Huang RH, Nagy TF, Tománek D (1996) Cavities and channels in electrides. J Am Chem Soc 118:7329–7336

    Article  CAS  Google Scholar 

  29. Dye JL (1997) Electrides: from 1D Heisenberg chains to 2D pseudo-metals. Inorg Chem 36:3816–3826

    Article  CAS  Google Scholar 

  30. Srdanov VI, Stucky GD, Lippmaa E, Engelhardt G (1998) Evidence for an antiferromagnetic transition in a zeolite-supported cubic lattice of F centers. Phys Rev Lett 80:2449–2452

    Article  CAS  Google Scholar 

  31. Kuo CT, Dye JL, Pratt WP Jr (1994) Effect of laser pulses on the photoelectron emission from Na+(C222)Na. J Phys Chem 98:13575–13582

    Article  CAS  Google Scholar 

  32. Dawes SB, Ward DL, Rydel OF, Huang RH, Dye JL (1989) Crystal structures and properties of two sodides and an electride. Inorg Chem 28:2132–2136

    Article  CAS  Google Scholar 

  33. Sawicka A, Skurski P, Simons J (2003) Inverse sodium hydride: a theoretical study. J Am Chem Soc 125:3954–3958

    Article  CAS  Google Scholar 

  34. Ichimura AS, Dye JL (2002) Toward inorganic electrides. J Am Chem Soc 124:1170–1171

    Article  CAS  Google Scholar 

  35. Dye JL (2003) Electrons as anions. Science 301:607–608

    Article  CAS  Google Scholar 

  36. Tehan FJ, Barnett BL, Dye JL (1974) Alkali anions. Preparation and crystal structure of a compound which contains the cryptated sodium cation and the sodium anion. J Am Chem Soc 13:7203–7208

    Article  Google Scholar 

  37. Dye JL, DeBacker MG, Nicely VA (1970) Solubilization of alkali metals in tetrahydrofuran and diethyl ether by use of a cyclic polyether. J Am Chem Soc 92:5226

    Article  CAS  Google Scholar 

  38. Chen W, Li ZR, Li Y, Sun CC, Gu FL, Aoki Y (2006) Nonlinear optical properties of alkalides Li+(calix[4]pyrrole)M (M = Li, Na, and K): alkali anion atomic number dependence. J Am Chem Soc 128:1072–1073

    Article  CAS  Google Scholar 

  39. Chen W, Li ZR, Wu D, Li Y, Sun CC, Gu FL (2005) The structure and the large nonlinear optical properties of Li@calix[4]pyrrole. J Am Chem Soc 127:10977–10981

    Article  CAS  Google Scholar 

  40. Wang FF, Li ZR, Wu D, Wang BQ, Li Y, Li ZJ (2008) Structures and considerable static first hyperpolarizabilities: new organic alkalides (M+@n 6adz)M’ (M, M’= Li, Na, K; n = 2, 3) with cation inside and anion outside of the cage complexants. J Phys Chem B 112:1090–1094

    Article  CAS  Google Scholar 

  41. Li ZJ, Li ZR, Wang FF, Luo C, Ma F, Wu D, Wang Q, Huang XR (2009) A dependence on the petal number of the static and dynamic first hyperpolarizability for electride molecules: many-petal-shaped Li-doped cyclic polyamines. J Phys Chem A 113:2961–2966

    Article  CAS  Google Scholar 

  42. Fan LT, Li Y, Wu D, Li ZR, Sun CC (2012) Structural characteristics and large non-linear optical responses of new alkaline earth-based alkalides. Aust J Chem 65:138–144

    Article  CAS  Google Scholar 

  43. Jing YQ, Li ZR, Wu D, Li Y, Wang BQ, Gu FL, Aoki Y (2006) Effect of the complexant shape on the large first hyperpolarizability of alkalides Li+(NH3)4M. ChemPhysChem 7:1759–1763

    Article  CAS  Google Scholar 

  44. Jing YQ, Li ZR, Wu D, Li Y, Wang BQ (2006) What is the role of the complexant in the large first hyperpolarizability of sodide systems Li(NH3) n Na (n = 1–4)? J Phys Chem B 110:11725–11729

    Article  CAS  Google Scholar 

  45. Concepcion R, Dye JL (1987) Li+(en)2 .Na: a simple crystalline sodide. J Am Chem Soc 109:7204–7206

    Article  Google Scholar 

  46. De Backer MG, Mkadmi EB, Sauvage FX, Lelieur JP, Wagner MJ, Concepcion R, Eglin JL, Guadagnini RA, Kim J, McMills LEH, Dye JL (1994) Lithium-ethylamine and lithium-sodium-ethylamine systems: a nonmetallic liquid electride and the lowest melting fused salt. J Am Chem Soc 116:6570–6576

    Article  Google Scholar 

  47. Gaussian 09, Revision C.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JAJr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian, Inc., Wallingford CT

  48. GaussView, version 3.09, R. Dennington II, Keith T, Millam J, Eppinnett K, Hovell WL, Gilliland R (2003) Semichem, Inc., Shawnee Mission, KS

  49. Redko MY, Huang RH, Jackson JE, Harrison JF, Dye JL (2003) Barium azacryptand sodide, the first alkalide with an alkaline earth cation, also contains a novel dimer, (Na2)2−. J Am Chem Soc 125:2259–2263

    Article  CAS  Google Scholar 

  50. Champagne B, Botek E, Nakano M, Nitta T, Yamaguchi K (2005) Basis set and electron correlation effects on the polarizability and second hyperpolarizability of model open-shell pπ-conjugated systems. J Chem Phys 122:114315

    Article  Google Scholar 

  51. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  52. Tawada Y, Tsuneda T, Yanagisawa S (2004) A long-range-corrected time-dependent density functional theory. J Chem Phys 120:8425–8433

    Article  CAS  Google Scholar 

  53. Kanis DR, Ratner MA, Marks TJ (1994) Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects. Chem Rev 94:195–242

    Article  CAS  Google Scholar 

  54. Oudar JL, Chemla DS (1977) Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment. J Chem Phys 66:2664–2668

    Article  CAS  Google Scholar 

  55. Sun WM, Wu D, Li Y, Liu JY, He HM, Li ZR (2015) A theoretical study on novel alkaline earth-based excess electron compounds: unique alkalides with considerable nonlinear optical responses. Phys Chem Chem Phys 17:4524–4532

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21173095, 21173098, 21303066) and State Key Development Program for Basic Research of China (Grant No. 2013CB834801).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, WM., Zhao, ZX., Wu, D. et al. Theoretical study on alkali-metal doped N3H3 complexes: an in-depth understanding of the origin of electride and alkalide and their large nonlinear optical properties. J Mol Model 21, 311 (2015). https://doi.org/10.1007/s00894-015-2854-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-015-2854-3

Keywords

Navigation