Skip to main content
Log in

Heterogeneous nucleation of polymorphs on polymer surfaces: polymer–molecule interactions using a heterogeneous dielectric solvation model

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

We have investigated the mechanism of the nucleation of acetaminophen on poly(methyl-methacrylate) and poly(vinyl-acetate) utilizing a combination of quantum mechanical computations and electrostatic models. We have used a heterogeneous dielectric solvation model to determine the stability of different orientations of acetaminophen on polymer surfaces. We find that for the nucleation of acetaminophen on the polymer surfaces in vacuum, the most stable orientation is a flat orientation. For the nucleation process in solution where acetaminophen and the polymer surface are surrounded by a solvent, we find that the heterogeneous dielectric solvation model predicts that a sideways orientation is the most stable orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Gavezzotti A (1995) J Am Chem Soc 117:12299–12305

    Article  CAS  Google Scholar 

  2. Gavezzotti A (2002) Cryst Eng Comm 4(61):343–347

    Article  CAS  Google Scholar 

  3. Haleblian J, McCrone W (1969) J Pharm Sci 58:911–929

    Article  CAS  PubMed  Google Scholar 

  4. Morisette SL, Soukasene S, Levinson D, Cima MJ, Almarsson O (2003) Proc Nat Acad Sci 100:2180–2184

    Article  CAS  Google Scholar 

  5. Bernstein J (2008) Polymorphism in molecular crystals

  6. Day GM, Cooper TG, Cruz-Cabeza AJ, Hejczyk KE, Ammon HL, Boerrigter SXM, Tan JS et al (2009) Acta Cryst B65:107–125

    Article  CAS  Google Scholar 

  7. Kendrick J, Leusen FJJ, Neumann MA, van de Streek J (2011) Prog Cryst Struc Pred Chem 17:10736–10744

    CAS  Google Scholar 

  8. Madsen AØ, Larsen S (2007) Ang Chemie Int Ed 46:8609–8613

    Article  CAS  Google Scholar 

  9. Madsen AØ, Mattson R, Larsen S (2011) J Phys Chem A 115:7794–7804

    Article  CAS  PubMed  Google Scholar 

  10. Jarzembska KN, Hoser AA, Kaminski R, Madsen AØ, Durka K, Wozniak K (2014) Cryst Growth Des 17:3453–3465

    Article  CAS  Google Scholar 

  11. Nyman J, Day GM (2015) Cryst Eng Comm 17:5154–5165

    Article  CAS  Google Scholar 

  12. Wahlberg N, Ciochon P, Petricek V, Madsen AØ (2014) Cryst Growth Des 14:381–388

    Article  CAS  Google Scholar 

  13. Weissbuch I, Lahav M, Leiserowitz L (2003) Crys Growth Des 3:125–150

    Article  CAS  Google Scholar 

  14. Weissbuch I, Shimon LJW, Landau EM, Popovitzbiro R, Berkovitchyellin Z, Addadi L, Lahav M, Leiserowitz L (1986) Pure Appl Chem 58:947–954

    Article  CAS  Google Scholar 

  15. Weissbuch I, Zbaida D, Addadi L, Leiserowitz L, Lahav MJ (1987) J Am Chem Soc 109:1869–1871

    Article  CAS  Google Scholar 

  16. Weissbuch I, Addadi L, Lahav M, Leiserowitz L (1991) Science 253:637–645

    Article  CAS  PubMed  Google Scholar 

  17. Price CP, Grzesiak AL, Matzger AJ (2005) J Am Chem Soc 127:5512–5517

    Article  CAS  PubMed  Google Scholar 

  18. Ockwig N, Yaghi O, Matzger AJ (2006) Ang Chemie Int Ed

  19. Foroughi LM, Kang Y-N, Matzger AJ (2011) Cryst Growth Des 11:1294–1298

    Article  CAS  Google Scholar 

  20. Boldyreva EV, Drebushchak VA, Paukov IE, Kovalevskaya YA, Drebushchak TN (2004) J Therm Anal Cal 77:607–623

    Article  CAS  Google Scholar 

  21. Lopez-Mejias V, Knight JL, Brooks CL, Matzger JA (2011) J Langmuir 27:7575–7579

    Article  CAS  Google Scholar 

  22. Newton MD (1975) J Phys Chem 79:2795

    Article  CAS  Google Scholar 

  23. Noell JO, Morokuma K (1975) Chem Phys Lett 36:465

    Article  CAS  Google Scholar 

  24. Beveridge DL, Schnuelle GW (1975) J Phys Chem 79:2562

    Article  CAS  Google Scholar 

  25. Hylton J, Christoffersen RE, Hall GG (1974) Chem Phys Lett 24:501

    Article  CAS  Google Scholar 

  26. Contreras R, Aizman A (1985) Int J Quant Chem 27:193

    Article  Google Scholar 

  27. Hoshi H, Sakurai M, Inone Y, Chujo R (1987) J Chem Phys 87:1107

    Article  CAS  Google Scholar 

  28. Tapia O (1980) Molecular interactions. In: Ratajczak H, Orville-Thomas WJ (eds). Wiley, New York

  29. Warshel A (1978) Chem Phys Lett 55:454

    Article  CAS  Google Scholar 

  30. Sanchez-Marcos E, Terryn B, Rivail JL (1985) J Phys Chem 87:4695

    Article  Google Scholar 

  31. Rinaldi D (1982) Comput Chem 6:155

    Article  CAS  Google Scholar 

  32. Tapia O (1980) Quantum theory of chemical reactions. In: Daudel R, Pullman A, Salem L, Veillard A (eds), vol 3. Wiley, Dordrecht, p 25

  33. Karlström G (1989) J Phys Chem 93:4952

    Article  Google Scholar 

  34. Karelson M, Zerner M (1990) J Am Chem Soc 112:9405

    Article  CAS  Google Scholar 

  35. Day PN, Jensen JH, Gordon MS, Webb SP, Stevens WJ, Krauss M, Garmer D, Basch H, Cohen D (1996) J Chem Phys 105:1968

    Article  CAS  Google Scholar 

  36. Chen W, Gordon MS (1996) J Chem Phys 105:11081

    Article  CAS  Google Scholar 

  37. Cramer CJ, Truhlar DG (1991) J Am Chem Soc 113:8305

    Article  CAS  Google Scholar 

  38. Cramer CJ, Truhlar DG (1992) Science 256:213

    Article  CAS  PubMed  Google Scholar 

  39. Mikkelsen KV, Dalgaard E, Svanstøm P (1987) J Phys Chem 91:3081

    Article  CAS  Google Scholar 

  40. Mikkelsen KV, Ågren H, Aa Jensen HJ, Helgaker T (1988) J Chem Phys 89:3086

    Article  CAS  Google Scholar 

  41. Mikkelsen KV, Jørgensen P, Aa Jensen HJ (1994) J Chem Phys 100:6597–6607

    Article  CAS  Google Scholar 

  42. Mikkelsen KV, Luo Y, Ågren H, Jørgensen P (1994) J Chem Phys 100:8240

    Article  CAS  Google Scholar 

  43. Mikkelsen KV, Luo Y, Ågren H, Jørgensen P (1995) J Chem Phys 102:9362

    Article  CAS  Google Scholar 

  44. Mikkelsen KV, Sylvester-Hvid KO (1996) J Phys Chem 100:9116

    Article  CAS  Google Scholar 

  45. Di Bella S, Marks TJ, Ratner MA (1994) J Am Chem Soc 116:4440

    Article  CAS  Google Scholar 

  46. Yu J, Zerner MC (1994) J Chem Phys 100:7487

    Article  CAS  Google Scholar 

  47. Cammi R, Cossi M, Mennucci B, Tomasi J (1996) J Chem Phys 105:10556

    Article  CAS  Google Scholar 

  48. Willetts A, Rice JE (1993) J Chem Phys 99:426

    Article  CAS  Google Scholar 

  49. Cammi R, Cossi M, Tomasi J (1996) J Chem Phys 104:4611

    Article  CAS  Google Scholar 

  50. Wong MW, Frisch MJ, Wiberg KB (1991) J Am Chem Soc 113:4776

    Article  CAS  Google Scholar 

  51. Angyan JG (1995) Chem Phys Lett 241:51

    Article  CAS  Google Scholar 

  52. Olivares del Valle FJ, Tomasi J (1991) Chem Phys 150:139

    Article  CAS  Google Scholar 

  53. Chipot C, Rinaldi D, Rivail JL (1991) Chem Phys Lett 191:287

    Article  Google Scholar 

  54. Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161

    Article  CAS  PubMed  Google Scholar 

  55. Tomasi J, Cammi R, Mennucci B (1999) Int J Quant Chem 75:783

    Article  CAS  Google Scholar 

  56. Christiansen O, Mikkelsen KV (1999) J Chem Phys 110:1365

    Article  CAS  Google Scholar 

  57. Poulsen TD, Kongsted J, Osted A, Ogilby PR, Mikkelsen KV (2001) J Chem Phys 115:2393–2400

    Article  CAS  Google Scholar 

  58. Poulsen TD, Ogilby PR, Mikkelsen KV (2001) J Chem Phys 115:7843–7851

    Article  CAS  Google Scholar 

  59. Poulsen TD, Ogilby PR, Mikkelsen KV (2002) J Chem Phys 116:3730–3738

    Article  CAS  Google Scholar 

  60. Nymand TM, Åstrand P-O, Mikkelsen KV (1997) J Phys Chem B 101:4105

    Article  CAS  Google Scholar 

  61. Jensen L, Schmidt OH, Mikkelsen KV, Åstrand P-O (2000) J Phys Chem B 104:10462

    Article  CAS  Google Scholar 

  62. Osted A, Kongsted J, Mikkelsen KV, Christiansen O (2004) J Phys Chem A 108:8646–8658

    Article  CAS  Google Scholar 

  63. Jørgensen S, Ratner MA, Mikkelsen KV (2001) J Chem Phys 115:3792

    Article  CAS  Google Scholar 

  64. Jørgensen S, Ratner MA, Mikkelsen KV (2001) J Chem Phys 115:8185

    Article  CAS  Google Scholar 

  65. Jørgensen S, Ratner MA, Mikkelsen KV (2002) J Chem Phys 116:10902

    Article  CAS  Google Scholar 

  66. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc., Wallingford, CT

  67. Cioslowski J (1989) Phys Rev Lett 62:1469

    Article  CAS  PubMed  Google Scholar 

  68. Cioslowski J (1989) J Am Chem Soc 111:8333

    Article  CAS  Google Scholar 

  69. Åstrand P-O, Ruud K, Mikkelsen KV, Helgaker T (1998) J Phys Chem A 102:7686

    Article  Google Scholar 

  70. Breneman CM, Wiberg KB (1990) J Comp Chem 11:361–73

    Article  CAS  Google Scholar 

  71. Wahlberg N, Madsen A Ø, Mikkelsen KV Accepted in J. Mol. Mod. https://doi.org/10.1007/s00894-018-3664-1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt V. Mikkelsen.

Additional information

This paper belongs to Topical Collection XIX - Brazilian Symposium of Theoretical Chemistry (SBQT2017)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wahlberg, N., Madsen, A.Ø. & Mikkelsen, K.V. Heterogeneous nucleation of polymorphs on polymer surfaces: polymer–molecule interactions using a heterogeneous dielectric solvation model. J Mol Model 24, 156 (2018). https://doi.org/10.1007/s00894-018-3657-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3657-0

Keywords

Navigation