Skip to main content

Advertisement

Log in

Characterization of the interactions between coumarin-derivatives and acetylcholinesterase: Examination by NMR and docking simulations

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is one of the most common forms of dementia and a significant threat to the elderly populations, especially in the Western world. The rapid hydrolysis of the principal neurotransmitter into choline and acetate by acetylcholinesterase (AChE) at synapses causes the loss of cognitive response that becomes the real cause of AD. Therefore, inhibition of AChE is the most fundamental therapy among currently available treatments for AD. In this context, we designed and performed molecular recognitions studies of coumarin-based inhibitors towards AChE. STD NMR and Tr-NOESY applications were utilized to evaluate the binding epitope, the dissociation constant (KD) and bound conformations of these inhibitors within this inhibitor-AChE complex. Compound 1, which has a similar inhibition activity to tacrine (a current drug) led in this study as a stronger binder with KD = 30 μM ,even greater than tacrine (KD = 140 μM). Moreover, docking simulations mimic NMR results and provided evidence of synchronizing binding of compound 1 with three sites; the peripheral anionic site, the bottom of the gorge, and the catalytic site. Therefore, we envisioned from our experimental and theoretical results that coumarin-based inhibitors containing a piperidinyl scaffold might be a potential drug candidates for AD in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5a,b
Fig. 6a–c

Similar content being viewed by others

References

  1. Tabet N (2006) Acetylcholinesterase inhibitors for Alzheimer’s disease: anti-inflammatories in acetylcholine clothing. Age Ageing 35(4):336–338

    Article  CAS  PubMed  Google Scholar 

  2. Scarpini E, Schelterns P, Feldman H (2003) Treatment of Alzheimer’s disease; current status and new perspectives. Lancet Neurol 2(9):539–547

    Article  CAS  PubMed  Google Scholar 

  3. Kirby J, Green C, Loveman E, Clegg A, Picot J, Takeda A, Payne E (2006) A systematic review of the clinical and cost-effectiveness of memantine in patients with moderately severe to severe Alzheimer’s disease. Drugs Aging 23(3):227–240

    Article  CAS  PubMed  Google Scholar 

  4. Delfini M, Di Cocco ME, Piccioni F, Porcelli F, Borioni A, Rodomonte A, Del Giudice MR (2007) Tacrine derivatives–acetylcholinesterase interaction: 1H NMR relaxation study. Bioorg Chem 35(3):243–257

    Article  CAS  PubMed  Google Scholar 

  5. Silman I, Millard CB, Ordentlich A, Greenblatt HM, Harel M, Barak D, Shafferman A, Sussman JL (1999) A preliminary comparison of structural models for catalytic intermediates of acetylcholinesterase. Chem Biol Interact 119–120(0):43–52

    Article  PubMed  Google Scholar 

  6. Silman I, Sussman JL (2005) Acetylcholinesterase: ‘classical’ and ‘non-classical’ functions and pharmacology. Curr Opin Pharmacol 5(3):293–302

    Article  CAS  PubMed  Google Scholar 

  7. Houghton PJ, Ren Y, Howes M-J (2006) Acetylcholinesterase inhibitors from plants and fungi. Nat Prod Rep 23(2):181–199

    Article  CAS  PubMed  Google Scholar 

  8. Čolović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM (2013) Acetylcholinesterase inhibitors: pharmacology and toxicology. Curr Neuropharmacol 11(3):315–335

    Article  PubMed  PubMed Central  Google Scholar 

  9. Collin C, Hauser F, de Valdivia E, Li S, Reisenberger J, Carlsen EM, Khan Z, Hansen N, Puhm F, Søndergaard L, Niemiec J, Heninger M, Ren G, Grimmelikhuijzen CP (2013) Two types of muscarinic acetylcholine receptors in drosophila and other arthropods. Cell Mol Life Sci 70(17):3231–3242

    Article  CAS  PubMed  Google Scholar 

  10. Cummings JL (2004) Alzheimer’s disease. N Engl J Med 351(1):56–67

    Article  CAS  PubMed  Google Scholar 

  11. Francis PT, Nordberg A, Arnold SE (2005) A preclinical view of cholinesterase inhibitors in neuroprotection: do they provide more than symptomatic benefits in Alzheimer’s disease? Trends Pharmacol Sci 26(2):104–111

    Article  CAS  PubMed  Google Scholar 

  12. Scott L, Goa K (2000) Galantamine. Drugs 60(5):1095–1122

    Article  CAS  PubMed  Google Scholar 

  13. Qizilbash NWAHJ et al (1998) Cholinesterase inhibition for alzheimer disease: a meta-analysis of the tacrine trials. JAMA 280(20):1777–1782

    Article  CAS  PubMed  Google Scholar 

  14. Enz A, Boddeke H, Gray J, Spiegel R (1991) Pharmacologic and clinicopharmacologic properties of SDZ ENA 713, a centrally selective acetylcholinesterase inhibitor. Ann N Y Acad Sci 640:272–275

    Article  CAS  PubMed  Google Scholar 

  15. Ahmed M, Rocha JBT, Corrêa M, Mazzanti CM, Zanin RF, Morsch ALB, Morsch VM, Schetinger MRC (2006) Inhibition of two different cholinesterases by tacrine. Chem Biol Interact 162(2):165–171

    Article  CAS  PubMed  Google Scholar 

  16. Hamulakova S, Janovec L, Hrabinova M, Kristian P, Kuca K, Banasova M, Imrich J (2012) Synthesis, design and biological evaluation of novel highly potent tacrine congeners for the treatment of Alzheimer’s disease. Eur J Med Chem 55:23–31

    Article  CAS  PubMed  Google Scholar 

  17. Wu CS, Yang JT (1989) Tacrine protection of acetylcholinesterase from inactivation by diisopropylfluorophosphate: a circular dichroism study. Mol Pharmacol 35(1):85–92

    CAS  PubMed  Google Scholar 

  18. Zhang Y, Hei T, Cai Y, Gao Q, Zhang Q (2012) Affinity binding-guided fluorescent nanobiosensor for acetylcholinesterase inhibitors via distance modulation between the fluorophore and metallic nanoparticle. Anal Chem 84(6):2830–2836

    Article  CAS  PubMed  Google Scholar 

  19. Vanzolini KL, Vieira LCC, Corrêa AG, Cardoso CL, Cass QB (2013) Acetylcholinesterase immobilized capillary reactors–tandem mass spectrometry: an on-flow tool for ligand screening. J Med Chem 56(5):2038–2044

    Article  CAS  PubMed  Google Scholar 

  20. Da Silva JI, de Moraes MC, Vieira LCC, Corrêa AG, Cass QB, Cardoso CL (2013) Acetylcholinesterase capillary enzyme reactor for screening and characterization of selective inhibitors. J Pharm Biomed Anal 73:44–52

    Article  CAS  PubMed  Google Scholar 

  21. Yin G, Li YM, Wei W, Jiang SH, Zhu DY, Du WH (2008) Interactions of acetylcholinesterase with salvianolic acid B and rosmarinic acid from Salvia miltiorhiza water extract investigated by NMR relaxation rate. Chin Chem Lett 19(6):747–751

    Article  CAS  Google Scholar 

  22. Mayer M, Meyer B (1999) Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew Chem Int Ed 38(12):1784–1788

    Article  CAS  Google Scholar 

  23. Tanoli NU, Tanoli SAK, Ferreira AG, Gul S, Ul-Haq Z (2015) Evaluation of binding competition and group epitopes of acetylcholinesterase inhibitors by STD NMR, Tr-NOESY, DOSY and molecular docking: an old approach but new findings. Med Chem Commun 6(10):1882–1890

    Article  CAS  Google Scholar 

  24. Meyer B, Peters T (2003) NMR spectroscopy techniques for screening and identifying ligand binding to protein receptors. Angew Chem Int Ed 42(8):864–890

    Article  CAS  Google Scholar 

  25. Tanoli SAK, Tanoli NU, Bondancia TM, Usmani S, Kerssebaum R, Ferreira AG, Fernandes JB, Ul-Haq Z (2013) Crude to leads: a triple-pronged direct NMR approach in coordination with docking simulation. Analyst 138: 5137–5145

  26. Tanoli SAK, Tanoli NU, Bondancia TM, Usmani S, Ul-Haq Z, Fernandes JB, Thomasi SS, Ferreira AG (2015) Human serum albumin-specific recognition of the natural herbal extract of Stryphnodendron polyphyllum through STD NMR, hyphenations and docking simulation studies. RSC Adv 5(30):23431–23442

    Article  CAS  Google Scholar 

  27. Mayer M, Meyer B (2001) Group epitope mapping by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc 123(25):6108–6117

    Article  CAS  PubMed  Google Scholar 

  28. Tanoli SK, Tanoli N, Usmani S, Zaheer Ul H, Ferreira A (2014) The exploration of interaction studies of smaller size, mostly ignored yet intrinsically inestimable molecules towards BSA; an example of STD and DOSY NMR. Cent Eur J Chem 12(3):332–340

    Article  CAS  Google Scholar 

  29. Anand P, Singh B, Singh N (2012) A review on coumarins as acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorg Med Chem 20:1175–1180

    Article  CAS  Google Scholar 

  30. Nisa C, Chalisa S, Kornkanok I, Pattara S (2012) Acetyl- and Butyryl-cholinesterase inhibitory activities of mansorins and mansonones. Phytother Res 26:392–396

    Google Scholar 

  31. de Souza LG, Rennó MN, Figueroa-Villar JD (2016) Coumarins as cholinesterase inhibitors: a review. Chem Biol Interact 254:11–23

    Article  CAS  PubMed  Google Scholar 

  32. Piazzi L et al (2008) Multi-target-directed coumarin derivatives: hAChE and BACE1 inhibitors as potential anti-Alzheimer compounds. Bioorg Med Chem Lett 18:423–426

    Article  CAS  PubMed  Google Scholar 

  33. Piazzi L et al (2003) 3-(4-{[Benzyl(methyl)amino]methyl}phenyl)-6,7-dimethoxy-2H-2-chromenone (AP2238) inhibits both acetylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation: a dual function lead for Alzheimer’s disease therapy. J Med Chem 46:2279–2282

    Article  CAS  PubMed  Google Scholar 

  34. Zhou X, Wang X-B, Wang T, Kong L-Y (2008) Design, synthesis, and acetylcholinesterase inhibitory activity of novel coumarin analogues. Bioorg Med Chem 16:8011–8021

    Article  CAS  Google Scholar 

  35. Bon S, Vigny M, Massoulié J (1979) Asymmetric and globular forms of acetylcholinesterase in mammals and birds. Proc Natl Acad Sci USA 76(6):2546–2550

    Article  CAS  PubMed  Google Scholar 

  36. Pezzementi L, Nachon F, Chatonnet A (2011) Evolution of acetylcholinesterase and butyrylcholinesterase in the vertebrates: an atypical butyrylcholinesterase from the medaka oryzias latipes. PLoS One 6(2):e17396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bourne Y, Taylor P, Marchot P (1995) Acetylcholinesterase inhibition by fasciculin: crystal structure of the complex. Cell 83(3):503–512

    Article  CAS  PubMed  Google Scholar 

  38. Fielding L (2007) NMR methods for the determination of protein–ligand dissociation constants. Prog Nucl Magn Reson Spectrosc 51(4):219–242

    Article  CAS  Google Scholar 

  39. Mari S, Invernizzi C, Spitaleri A, Alberici L, Ghitti M, Bordignon C, Traversari C, Rizzardi G-P, Musco G (2010) 2D TR-NOESY experiments interrogate and rank ligand–receptor interactions in living human cancer cells. Angew Chem Int Ed 49(6):1071–1074

    Article  CAS  Google Scholar 

  40. Choudhary MI, Nawaz SA, Zaheer ul H, Azim MK, Ghayur MN, Lodhi MA, Jalil S, Khalid A, Ahmed A, Rode BM, Atta ur R, Gilani A-u-H, Ahmad VU (2005) Juliflorine: a potent natural peripheral anionic-site-binding inhibitor of acetylcholinesterase with calcium-channel blocking potential, a leading candidate for Alzheimer’s disease therapy. Biochem Biophys Res Commun 332(4):1171–1179

    Article  CAS  PubMed  Google Scholar 

  41. Shen Y, Sheng R, Zhang J, He Q, Yang B, Hu Y (2008) 2-Phenoxy-indan-1-one derivatives as acetylcholinesterase inhibitors: a study on the importance of modifications at the side chain on the activity. Bioorg Med Chem 16(16):7646–7653

    Article  CAS  PubMed  Google Scholar 

  42. Kim J, Choi G, Kwak J, Jeong H, Jeong C-H, Heo H (2011) Neuronal cell protection and acetylcholinesterase inhibitory effect of the phenolics in chestnut inner skin. Food Sci Biotechnol 20(2):311–318

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors of the manuscript are thankful for and gratefully acknowledge the financial support from the World Acaemy of Sciences/National Council for Scientific and Technological Development (TWAS/CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Brazilian funding agency.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nazish U. Tanoli or Sheraz A. K. Tanoli.

Electronic supplementary material

ESM 1

(DOCX 20334 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanoli, N.U., Tanoli, S.A.K., Ferreira, A.G. et al. Characterization of the interactions between coumarin-derivatives and acetylcholinesterase: Examination by NMR and docking simulations. J Mol Model 24, 207 (2018). https://doi.org/10.1007/s00894-018-3751-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-018-3751-3

Keywords

Navigation