Skip to main content
Log in

Revealing the optoelectronic properties of Re-based double perovskites using the Tran-Blaha modified Becke-Johnson with density functional theory

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Density functional theoretical (DFT) calculations were carried out to explore the electronic and optical properties of double ordered Ba2NaReO6, Ba2LiReO6, and Sr2LiReO6 perovskites by employing the state-of-the-art exchange-correlation potential, i.e., Tran-Blaha modified Becke-Johnson for the electronic system. The calculated electronic band structures show an indirect band gap along with a semiconductor nature. Total and partial densities of state peaks were analyzed in light of effective contributions of various electronic states. The significant optical parameters, including the components of dielectric constant, the energy loss function, the absorption coefficient, the reflectivity spectra, the refractive index, and the extinction coefficient, were computed and discussed in details for radiation up to 14 eV. Finally, we studied the inter-band contributions from the optical characteristics. Our present study might be considered as first theoretical quantitative calculations of the optical and electronic behavior in the cubic phase of double perovskite materials based on rhenium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dutta A, Sinha TP, Shannigrahi S (2007). Phys. Rev. B 76:155113

    Article  CAS  Google Scholar 

  2. Sebastian MT (2008) Dielectric materials for wireless communication. Elsevier, Amsterdam

    Google Scholar 

  3. Lufaso MW, Woodward PM (2001). Acta Cryst. B 57:725

    Article  CAS  Google Scholar 

  4. Serrate D, De Teresa JM, Ibarra MR (2007). J. Phys. Condens. Matter 19:86

    Google Scholar 

  5. Azad AK, Ivanov SA, Eriksson SG, Rundlof H, Eriksen J, Mathieu R, Svedlindh P (2001). J. Magn. Magn. Mater. 237:124

    Article  CAS  Google Scholar 

  6. Vasala S, Karppinen M (2015). Prog. Solid State Chem. 43:136

    Article  CAS  Google Scholar 

  7. Sleight AW, Ward R (1961). J. Am. Chem. Soc. 83:1088–1090

    Article  CAS  Google Scholar 

  8. Sleight AW, Longo J, Ward R (1962). Inorg. Chem. 1:245–250

    Article  CAS  Google Scholar 

  9. Picard JP, Aneas M, Baud G, Besse J-P, Chevalier R, Less Common J (1981). Metals. 79:165–167

    CAS  Google Scholar 

  10. Chen H, Kou X, Yang Z, Ni W, Wang J (2008). Langmuir 24:5233–5237

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J, Langille MR, Personick ML, Zhang K, Li S, Mirkin CA (2010). J. Am. Chem. Soc. 132:14012–14014

    Article  CAS  PubMed  Google Scholar 

  12. Philipp JB, Majewski P, Alff L, Erb A, Gross R, Graf T, Brandt MS, Simon J, Walther T, Mader W, Topwal D, Sarma DD (2003). Phys. Rev. B 68:144431

    Article  CAS  Google Scholar 

  13. Vidya R, Ravindran P, Kjekshus A, Fjellvg H (2004). Phys. Rev. B 70:184414

    Article  CAS  Google Scholar 

  14. Baidya S, Saha-Dasgupta T (2011). Phys. Rev. B 84:035131

    Article  CAS  Google Scholar 

  15. Gopalakrishnan J, Chattopadhyay A, Ogale SB, Venkatesan T, Greene RL, Millis AJ, Ramesha K, Hannoyer B, Marest G (2000). Phy. Rev. B 62:9538–9542

    Article  CAS  Google Scholar 

  16. Lofland SE, Scabarozi T, Kale S, Bhagat SM, Ogale SB, Venkatesan T, Greene RL, Gopalakrishnan J, Ramesha K (2001). IEEE Trans. Magn. 37:2153–2155

    Article  CAS  Google Scholar 

  17. Khattak CP, Cox DE, Wang FFY, Solid State J (1975). Chem. 13:77–83

    CAS  Google Scholar 

  18. Rammeh N, Ehrenberg H, Fuess H, Cheikkh-Rouhou A (2006). Phys. Stat. Solidi C 9:3225–3228

    Article  CAS  Google Scholar 

  19. Blanco JJ, Hernandez T, Lide MRM, Insausti M, Barandiaran JM, Greneche JM, Rojo T (2001). J. Mater. Chem. 11:253–256

    Article  CAS  Google Scholar 

  20. Sasaki Y, Doi Y, Hinatsu Y (2002). J. Mater. Chem. 12:2361–2366

    Article  CAS  Google Scholar 

  21. Kato H, Okuda T, Okimoto Y, Tomioka Y, Takenoya Y, Ohkubo A, Kawasaki M, Tokura Y (2002). Appl. Phys. Lett. 81:328–330

    Article  CAS  Google Scholar 

  22. Berri S (2015). J. Magn. Magn. Mater. 385:124–128

    Article  CAS  Google Scholar 

  23. Dutta A, Sinha TP, Shannigrahi S (2008). J. Appl. Phys. 104:064114

    Article  CAS  Google Scholar 

  24. Dutta A, Sinha Solid TP (2010). State Communications 150:1173–1177

    Article  CAS  Google Scholar 

  25. Gassoumi A, Saad MMHE (2016). Mater. Sci. Semicond. Process. 50:14–19

    Article  CAS  Google Scholar 

  26. Ghebouli B, Ghebouli MA, Choutri H, Fatmi M, Chihi T, Louail L, Bouhemadou A, Bin-Omran S, Khenata R, Khachai H (2016). Mater. Sci. Semicond. Process. 42:405–412

    Article  CAS  Google Scholar 

  27. Rai DP et al (2015). Comput. Mater. Sci. 27:23415

    Google Scholar 

  28. Rameshe B, Murugan R, B. Palanivel International (2015). Journal of Modern Physics B 29:1550246

    Google Scholar 

  29. Zhao S, Lan C, Ma J, Pandey SS, Hayase S, Ma T (2015). Solid State Commun. 213:19–23

    Article  CAS  Google Scholar 

  30. Patterson FK, Moeller CW, Ward R (1963). Inorg. Chem. 2:196

    Article  CAS  Google Scholar 

  31. Ishida S, Fujii S, Kashiwagi S, Asano S (1995). J. Phys. Soc. Jpn. 64:2152

    Article  CAS  Google Scholar 

  32. Ramesha K, Thangadurai V, Sutar D, Subramanyam SV, Subbanna GN, Gopalakrishnan J (2000). Mater. Res. Bull. 35:559–565

    Article  CAS  Google Scholar 

  33. Anisimov VI, Zaanen J, Andersen OK (1991). Phys. Rev. B 44:943

    Article  CAS  Google Scholar 

  34. Aryasetiawan F, Solovyevc I, Miyaked T, Ohnoa T, Terakurab K (2003). Physica B 329:858

    Google Scholar 

  35. Huser F, Olsen T, Thygesen KS (2013). Phys. Rev. B 87:235132

    Article  CAS  Google Scholar 

  36. Becke AD, Roussel MR (1989). Phys. Rev. A 39:3761

    Article  CAS  Google Scholar 

  37. Tran F, Blaha P (2009). Phys. Rev. Lett. 102:226401

    Article  PubMed  CAS  Google Scholar 

  38. P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, an augmented plane wave+ local orbitals program for calculating crystal properties, Techn. Universität Wien, Vienna, (2001)

  39. Perdew JP, Parr RG, Levy M, Balduz Jr JL (1982). Phys. Rev. Lett. 49:1691

    Article  CAS  Google Scholar 

  40. Majid A, Khan A, Choi T (2011). Comput. Mater. Sci. 50:1879–1888

    Article  CAS  Google Scholar 

  41. Murnaghan FD (1944). Proc. Natl. Acad. Sci. U. S. A. 30:244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kohn W, Sham LJ (1965). Phys. Rev. B 140:A1133

    Article  Google Scholar 

  43. Baizaee SM, Mousavi N (2009). Physica B 404:2111

    Article  CAS  Google Scholar 

  44. Damany H, Laporte P (1976). Opt. Commun. 16:272

    Article  Google Scholar 

  45. Zhou Z, Li M, Guo L (2010). J. Phys. Chem. Solids 71:1707

    Article  CAS  Google Scholar 

  46. Azam S, Khan SA, Goumri-Said S (2015). Mater. Sci. Semicond. Process. 34:250–259

    Article  CAS  Google Scholar 

  47. Amin B, Ahmad I, Maqbool M, Goumri-Said S, Ahmad R (2011). Journal of Applied Physics 109(2):023109

    Article  CAS  Google Scholar 

  48. Anua NN, Ahmed R, Shaari A, Saeed MA, Ul Haq B, Goumri-Said S (2013). Semiconductor Science And Technology 28(10):105015

    Article  CAS  Google Scholar 

  49. Fadla MA, Bentria B, Benghia A, Dahame T, Goumri-Said S (2020). Journal of Alloys and Compounds:154847

  50. Mahmood A, Azam S, Irfan M, Kamran MA, Alharbi T, Majid A, Iqbal MW, Muhammad S, Al-Sehemi AG, Khan SA, Goumri-Said S (2020). Mater. Sci. Semicond. Process. 107:104800

    Article  CAS  Google Scholar 

Download references

Funding

This work is funded by the Higher Education Commission (HEC) of Pakistan under the National Research Program for Universities (NRPU) with project no. HEC/R&D/NRPU/2017/7876. The Deanship of Scientific Research at Majmaah University provided funding for this work under project number (RPG-2019-8).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sikander Azam, R. Khenata or Xiaotian Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azam, S., Kamran, M.A., Iqbal, M.W. et al. Revealing the optoelectronic properties of Re-based double perovskites using the Tran-Blaha modified Becke-Johnson with density functional theory. J Mol Model 26, 158 (2020). https://doi.org/10.1007/s00894-020-04421-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04421-5

Keywords

Navigation