Skip to main content
Log in

Critical assessment of the FeC and CO bond strength in carboxymyoglobin: a QM/MM local vibrational mode study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The interplay between FeC and CO bonding in carboxymyoglobin (MbCO) and the role of potential hydrogen bonding between the CO moiety and the side chains of the surrounding protein amino acids have been the subject of numerous experimental and theoretical studies. In this work, we present a quantitative measure for the intrinsic FeC and CO bond strength in MbCO, as well as for CO⋯H bonding, based on the local vibrational mode analysis, originally developed by Konkoli and Cremer. We investigated a gas phase model, two models of the wild-type protein, and 17 protein mutations that change the distal polarity of the heme pocket, as well as two protein mutations of the heme porphyrin ring. Based on local mode force constants, we could quantify for the first time the suggested inverse relationship between the CO and FeC bond strength, the strength of CO⋯H bonding, and how it weakens the CO bond. Combined with the natural orbital analysis, we could also confirm the key role of π back donation between Fe and the CO moiety in determining the FeC bond strength. We further clarified that CO and FeC normal modes couple with other protein motions in the protein environment. Therefore, normal mode frequencies/force constants are not suited as bond strength descriptors and instead their local mode counterparts should be used. Our comprehensive results provide new guidelines for the fine-tuning of existing and the design of MbCO models with specific FeC, CO, and CO⋯H bond strengths.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gros G, Wittenberg BA, Jue T (2010). J Exp Biol 213(16):2713

  2. Kendrew JC, Dickerson RE, Strandberg BE, Hart RG, Davies DR, Phillips DC, Shore VC (1960). Nature 185(4711):422

  3. Springer BA, Sligar SG, Olson JS, Phillips GNJ (1994). Chem Rev 94(3):699

  4. Ordway GA, Garry DJ (2004). J Exp Biol 207(Pt 20):3441

  5. Tsai AL, Berka V, Martin E, Olson JS (2012). Biochemistry 51(1):172

  6. Spiro TG, Ibrahim M, Wasbotten IH (Elsevier, Amsterdam, 2008), chap. 4, pp. 95–123

  7. Buhrke D, Hildebrand P (2020). Chem Rev 120:3577

  8. Schneider SH, Boxer SG (2016). J Phys Chem B 120:9672

  9. Hush NS, Reimers JR (1995). J Phys Chem 99:15798

  10. Fried SD, Boxer SG (2015). Acc Chem Res 48:998

  11. Fried SD, Boxer SG (2017). Annu Rev Biochem 86:387

  12. Ma J, Pazos IM, Zhang W, Culik RM, Gai F (2015). Annu Rev Phys Chem 66:357

  13. Błasiak B, Londergan CH, Webb LJ, Cho M (2017). Acc Chem Res 50:968

  14. Bishop DM (1993). J Chem Phys 98:3179

  15. Tsubaki M, Srivastava RB, Yu NT (1982). Biochemistry 21(6):1132

  16. Ramsden J, Spiro TG (1989). Biochemistry 28(8):3125

  17. Morikis D, Champion PM, Springer BA, Sligar SG (1989). Biochemistry 28(11):4791

  18. Oldfield E, Guo K, Augspurger JD, Dykstra CE (1991). J Am Chem Soc 113(20):7537

  19. Cameron AD, Smerdon SJ, Wilkinson AJ, Habash J, Helliwell JR, Li T, Olson JS (1993). Biochemistry 32(48):13061

  20. Braunstein DP, Chu K, Egeberg KD, Frauenfelder H, Mourant JR, Nienhaus GU, Ormos P, Sligar SG, Springer BA, Young RD (1993). Biophys J 65(6):2447

  21. Li T, Quillin ML, Phillips GN, Olson JS (1994). Biochemistry 33(6):1433

  22. Ling J, Li T, Olson JS, Bocian DF (1994). Biochim Biophys Acta 1188(3):417

  23. Ray GB, Li XY, Ibers JA, Sessler JL, Spiro TG (1994). J Am Chem Soc 116(1):162

  24. Yang F, Phillips Jr GN (1996). J Mol Biol 256(4):762

  25. Anderton CL, Hester RE, Moore JN (1997). Biochim Biophys Acta 1338(1):107

  26. Nienhaus UG, Müller JD, McMahon BH, Frauenfelder H (1997). Physica D 107(2):297

  27. Kachalova GS, Popov AN, Bartunik HD (1999). Science 284(5413):473

  28. Vojtěchovský J, Chu K, Berendzen J, Sweet RM, Schlichting I (1999). Biophys J 77(4):2153

  29. Phillips GN, Teodoro ML, Li T, Smith B, Olson JS (1999). J Phys Chem B 103(42):8817

  30. Chu K, Vojtchovský J, McMahon BH, Sweet RM, Berendzen J, Schlichting I (2000). Nature 403(6772):921

  31. Franzen S, Peterson ES, Brown D, Friedman JM, Thomas MR, Boxer SG (2002). Eur J Biochem 269(19):4879

  32. Lamb DC, Nienhaus K, Arcovito A, Draghi F, Miele AE, Brunori M, Nienhaus GU (2002). J Biol Chem 277(14):11636

  33. Nienhaus K, Deng P, Olson JS, Warren JJ, Nienhaus GU (2003). J Biol Chem 278(43):42532

  34. Nienhaus K, Olson JS, Franzen S, Nienhaus GU (2005). J Am Chem Soc 127(1):40

  35. Rwere F, Mak PJ, Kincaid JR (2008). Biochemistry 47(48):12869

  36. Barends TRM, Foucar L, Ardevol A, Nass K, Aquila A, Botha S, Doak RB, Falahati K, Hartmann E, Hilpert M, Heinz M, Hoffmann MC, Köfinger J, Koglin JE, Kovacsova G, Liang M, Milathianaki D, Lemke HT, Reinstein J, Roome CM, Shoeman RL, Williams GJ, Burghardt I, Hummer G, Boutet S, Schlichting I (2015). Science 350(6259):445

  37. Jewsbury P, Kitagawa T (1994). Biophys J 67(6):2236

  38. Kushkuley B, Stavrov SS (1996). Biophys J 70(3):1214

  39. Sigfridsson E, Ryde U (1999). J Biol Inorg Chem 4:99

  40. Vogel KM, Kozlowski PM, Zgierski MZ, Spiro TG (2000). Inorg Chim Acta 297(1):11

  41. Rabenstein B, Knapp EW (2001). Biophys J 80(3):1141

  42. Rovira C, Schulze B, Eichinger M, Evanseck JD, Parrinello M (2001). Biophys J 81(1):435

  43. Spiro TG, Zgierski MZ, Kozlowski PM (2001). Coord Chem Rev 219-221:923

  44. Sigfridsson E, Ryde U (2002). J Inorg Biochem 91(1):101

  45. Merchant KA, Noid WG, Akiyama R, Finkelstein IJ, Goun A, McClain BL, Loring RF, Fayer MD (2003). J Am Chem Soc 125(45):13804

  46. Harvey JN (2004). Faraday Discuss 127(0):165

  47. Spiro TG, Wasbotten IH (2005). J Inorg Biochem 99(1):34

  48. Bikiel DE, Boechi L, Capece L, Crespo A, De Biase PM, Di Lella S, González Lebrero MC, Martí MA, Nadra AD, Perissinotti LL, Scherlis DA, Estrin DA (2006). Phys Chem Chem Phys 8(48):5611

  49. Strickland N, Mulholland AJ, Harvey JN (2006). Biophys J 90(4):L27

  50. Alcantara RE, Xu C, Spiro TG, Guallar V (2007). PNAS 104(47):18451

  51. Devereux M, Meuwly M (2009). Biophys J 96(11):4363

  52. Spiro TG, Soldatova AV, Balakrishnan G (2013). Coord Chem Rev 257(2):511

  53. Shimada H, Caughey WS (1982). J Biol Chem 257(20):11893

  54. Ansari A, Berendzen J, Braunstein D, Cowen BR, Frauenfelder H, Hong MK, Iben IET, Johnson JB, Ormos P, Sauke TB, Scholl R, Schulte A, Steinbach PJ, Vittitow J, Young RD (1987). Biophys Chem 26(2):337

  55. Mourant JR, Braunstein DP, Chu K, Frauenfelder H, Nienhaus GU, Ormos P, Young RD (1993). Biophys J 65(4):1496

  56. Johnson JB, Lamb DC, Frauenfelder H, Müller JD, McMahon B, Nienhaus GU, Young RD (1996). Biophys J 71(3):1563

  57. Silvernail NJ, Roth A, Schulz CE, Noll BC, Scheidt WR (2005). J Am Chem Soc 127:14422

  58. Spiro TG, Smulevich G, Su C (1990). Biochemistry 29(19):4497

  59. Falahati K, Tamura H, Burghardt I, Huix-Rotllant M (2018). Nat Commun 9:4502

  60. Konkoli Z, Cremer D (1998). Int J Quantum Chem 67:1

  61. Konkoli Z, Larsson JA, Cremer D (1998). Int J Quantum Chem 67:11

  62. Konkoli Z, Cremer D (1998). Int J Quantum Chem 67:29

  63. Konkoli Z, Larsson JA, Cremer D (1998). Int J Quantum Chem 67:41

  64. Cremer D, Larsson JA (1998) E. Kraka. In: Parkanyi C (ed) Theoretical and computational chemistry. Elsevier, Amsterdam, pp 259–327

  65. Springer BA, Egeberg KD, Sligar SG, Rohlfs RJ, Mathews AJ, Olson JS (1989). J Biol Chem 264:3057

  66. Olson JS, Phillips Jr GN (1997). J Biolog Inorg Chem 2(4):544

  67. Phillips SEV, Schoenborn BP (1981). Nature 292(5818):81

  68. Cheng X, Schoenborn BP (1991). J Mol Biol 220(2):381

  69. Zhao X, Vyas K, Nguyen BD, Rajarathnam K, La Mar GN, Li T, Phillips GN, Eich RF, Olson JS, Ling J, Bocian DF (1995). J Biol Chem 270(35):20763

  70. Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations. McGraw-Hill, New York

  71. Woodward LA (1972) Introduction to the theory of molecular vibrations and vibrational spectroscopy. Oxford University Press, Oxford

  72. Califano S (1976) Vibrational states. Wiley, New York

  73. Cremer D, Kraka E (2010). Curr Org Chem 14:1524

  74. Kraka E, Larsson JA (2010) D. Cremer. In: Grunenberg J (ed) Computational spectroscopy. Wiley, New York, pp 105–149

  75. Zou W, Filatov M, Cremer D (2011). Theor Chem Acc 130:633

  76. Wilson Jr EB (1939). J Chem Phys 7:1047

  77. Groner P (2006) Normal coordinate analysis. Wiley, New York

  78. Kelley JD, Leventhal JJ, in Problems in Classical and Quantum Mechanics (Springer, 2017), pp. 95–117

  79. Neto N (1984). Chem Phys 91:89

  80. Stare J (2007). J Chem Inf Model 47(3):840

  81. Zou W, Cremer D (2016). Chem Eur J 22:4087

  82. Kraka E, Setiawan D, Cremer D (2015). J Comput Chem 37:130

  83. Setiawan D, Kraka E, Cremer D (2015). J Phys Chem A 119:9541

  84. Kalescky R, Kraka E, Cremer D (2013). J Phys Chem A 117:8981

  85. Humason A, Zou W, Cremer D (2014). J Phys Chem A 119:1666

  86. Kalescky R, Zou W, Kraka E, Cremer D (2014). J Phys Chem A 118:1948

  87. Kraka E, Cremer D (2009). ChemPhysChem 10:686

  88. Setiawan D, Sethio D, Cremer D, Kraka E (2018). Phys Chem Chem Phys 20:23913

  89. Freindorf M, Kraka E, Cremer D (2012). Int J Quantum Chem 112:3174

  90. Kalescky R, Zou W, Kraka E, Cremer D (2012). Chem Phys Lett 554:243

  91. Kalescky R, Kraka E, Cremer D (2013). Mol Phys 111:1497

  92. Kalescky R, Zou W, Kraka E, Cremer D (2014). Aust J Chem 67:426

  93. Tao Y, Zou W, Jia J, Li W, Cremer D (2017). J Chem Theory Comput 13:55

  94. Tao Y, Zou W, Kraka E (2017). Chem Phys Lett 685:251

  95. Freindorf M, Tao Y, Sethio D, Cremer D, Kraka E (2018). Mol Phys 117:1172

  96. Makoś MZ, Freindorf M, Sethio D, Kraka E (2019). Theor Chem Acc 138:76

  97. Lyu S, Beiranvand N, Freindorf M, Kraka E (2019). J Phys Chem A 123:7087

  98. Oliveira V, Kraka E, Cremer D (2016). Phys Chem Chem Phys 18:33031

  99. Oliveira V, Kraka E, Cremer D (2016). Inorg Chem 56:488

  100. Oliveira V, Cremer D (2017). Chem Phys Lett 681:56

  101. Yannacone S, Oliveira V, Verma N, Kraka E (2019). Inorganics 7:47

  102. Oliveira VP, Kraka E, Machado FBC (2019). Inorg Chem 58:14777

  103. Oliveira VP, Marcial BL, Machado FBC, Kraka E (2020). Materials 13:55

  104. Setiawan D, Kraka E, Cremer D (2014). Chem Phys Lett 614:136

  105. Setiawan D, Kraka E, Cremer D (2014). J Phys Chem A 119:1642

  106. Setiawan D, Cremer D (2016). Chem Phys Lett 662:182

  107. Oliveira V, Cremer D, Kraka E (2017). J Phys Chem A 121:6845

  108. Oliveira V, Kraka E (2017). J Phys Chem A 121:9544

  109. Sethio D, Oliveira V, Kraka E (2018). Molecules 23:2763

  110. Li Y, Oliveira V, Tang C, Cremer D, Liu C, Ma J (2017). Inorg Chem 56:5793

  111. Kalescky R, Kraka E, Cremer D (2013). Inorg Chem 53:478

  112. Setiawan D, Kalescky R, Kraka E, Cremer D (2016). Inorg Chem 55:2332

  113. Cremer D, Kraka E (2017). Dalton Trans 46:8323

  114. Li Y, Liu C, Oliveira V, Cremer D, Chen Z, Ma J (2018). Mol Phys 117:1442

  115. Kalescky R, Kraka E, Cremer D (2013). J Phys Chem A 118:223

  116. Setiawan D, Kraka E, Cremer D (2016). J Organomet Chem 81:9669

  117. Zou W, Kalescky R, Kraka E, Cremer D (2012). J Chem Phys 137:084114

  118. Verma N, Tao Y, Zou W, Chen X, Chen X, Freindorf M, Kraka E (2020). Sensors 20:2358

  119. Tao Y, Zou W, Sethio D, Verma N, Qiu Y, Tian C, Cremer D, Kraka E (2019). J Chem Theory Comput 15:1761

  120. Tao Y, Qiu Y, Zou W, Nanayakkara S, Yannacone S, Kraka E (2020). Molecules 25:1589

  121. Mayer I (1983). Chem Phys Lett 97:270

  122. Mayer I (1986). Int J Quantum Chem 29:477

  123. Mayer I (2007). J Comput Chem 28(1):204

  124. Cremer D, Kraka E (1984). Angew Chem Int Ed 23:627

  125. Cremer D, Kraka E (1984). Croat Chem Acta 57:1259

  126. Bader R (1984) Atoms in Molecules: A Quantum Theory. Oxford University press

  127. Bader R (1998). Chem Rev 1:64

  128. Adamo C, Barone V (1999). J Chem Phys 110(13):6158

  129. Ditchfield R, Hehre WJ, Pople JA (1971). J Chem Phys 54:724

  130. Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, Ding L, Morokuma K (2015). Chem Rev 115:5678

  131. Case DA, Ben-Shalom IY, Brozell SR, Cerutti DS, Cheatham TE, Cruzeiro VWD, Darden TA, Duke RE, Ghoreishi D, Gilson MK, Gohlke H, Goetz AW, Greene D, Harris R, Homeyer N, Izadi S, Kovalenko A, Kurtzman T, Lee TS, LeGrand S, Li P, Lin C, Liu J, Luchko T, Luo R, Mermelstein DJ, Merz KM, Miao Y, Monard G, Nguyen C, Nguyen H, Omelyan I, Onufriev A, Pan F, Qi R, Roe DR, Roitberg A, Sagui C, Schott-Verdugo S, Shen J, Simmerling CL, Smith J, Salomon-Ferrer R, Swails J, Walker RC, Wang J, Wei H, Wolf RM, Wu X, Xiao L, York DM, Kollman PA, AMBER (2018). University of California, San Francisco

  132. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ (2016) Gaussian 16. Gaussian Inc. Wallingford

  133. Kraka E, Zou W, Filatov M, Gräfenstein J, Gauss J, He Y, Wu A, Konkoli Z, He Z, Cremer D et al (2016) COLOGNE16

  134. Reed AE, Curtiss LA, Weinhold F (1988). Chem Rev 88:899

  135. Keith TA, AIMALL (2017) TK gristmill software, Overland Park KS

  136. Frenking G, Loschen C, Krapp A, Fau S, Strauss SH (2007). J Comput Chem 28:117

  137. Dewar MJS (1953). Bull Soc Chim 48:112

  138. Chatt J, Duncanson L (1953). J Chem Soc:2939

  139. Gordon CP, Andersen RA, Coperet C (2019). Helv Chim Acta 102:e1900151

  140. Bistoni G, Rampino S, Scafuri N, Ciancaleoni G, Zuccaccia D, Belpassi L, Tarantelli F (2016). Chem Sci 7:1174

  141. Koch D, Chen Y, Golub P, Manzhos S (2019). Phys Chem Chem Phys 21:20814

  142. Li M, Oliver AG, Scheidt WR (2018). Inorg Chem 57:5648

  143. Zhou M, Andrews L, Bauschlicher CW (2001). Chem Rev 101:1931

  144. Tolman CA (1972). Chem Soc Rev 1(3):337

  145. Tolman CA (1977). Chem Rev 77(3):313

  146. Badger RM (1934). J Chem Phys 2:128

  147. Kraka E, Cremer D (2012). Rev Proc Quim:39–42

  148. Ibrahim M, Xu C, Spiro TG (2006). J Am Chem Soc 128(51):16834

Download references

Acknowledgments

The authors thank Southern Methodist University for providing excellent computational resources. We thank Niraj Verma for assistance with the CNM analysis of iron-porphyrin imidazole and Gernot Frenking, Vytor Oliveira, Dani Setiawan, and Daniel Sethio for fruitful discussions.

Funding

This work was supported by the National Science Foundation (Grant CHE 1464906).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elfi Kraka.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper belongs to Topical Collection XX - Brazilian Symposium of Theoretical Chemistry (SBQT2019)

Electronic supplementary material

ESM 1

(PDF 5687 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freindorf, M., Kraka, E. Critical assessment of the FeC and CO bond strength in carboxymyoglobin: a QM/MM local vibrational mode study. J Mol Model 26, 281 (2020). https://doi.org/10.1007/s00894-020-04519-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04519-w

Keywords

Navigation