Skip to main content
Log in

Electrochemical synthesis of Fe3O4 nanoparticles in alkaline aqueous solutions containing complexing agents

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Ultrafine magnetite particles are prepared through an electrochemical process, at room temperature, from an iron-based electrode immersed in an alkaline aqueous medium containing complexing compounds. XRD and chemical analysis indicate that the product is pure magnetite, Fe3O4. The size and morphology of the particles are studied by SEM. The magnetite nanoparticles present a magnetoresistance of almost 3%, at 300 K, under a magnetic field of 1 T. A reactive mechanism for the electrochemical process is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Elmore WC (1938) Phys Rev 54:309

    Article  CAS  Google Scholar 

  2. Massart R (1980) CR Acad Sci Paris 291C:1

    Google Scholar 

  3. Tronc E, Jolivet J-P, Massart R (1982) Mater Res Bull 17:1365

    Article  CAS  Google Scholar 

  4. Jolivet J-P, Massart R, Fruchart J-M (1983) Nouv J Chim 7:325

    CAS  Google Scholar 

  5. Jolivet J-P, Belleville P, Tronc E, Livage J (1992) Clays Clay Minerals 40:531

    CAS  Google Scholar 

  6. Tronc E, Belleville P, Jolivet J-P, Livage J (1992) Langmuir 8:313

    CAS  Google Scholar 

  7. Visalakshi G, Venkateswaran G, Kulshreshtha SK, Moorty PN (1993) Mater Res Bull 28:829

    Article  CAS  Google Scholar 

  8. Siles-Dotor MG, Morales A, Benaissa M, Cabral-Prieto A (1997) Nanostruct Mater 8:657

    Google Scholar 

  9. Darken LS, Gurry RW (1946) J Am Chem Soc 68:798

    CAS  Google Scholar 

  10. Von Osterhont (1975) Magnetic oxides. Wiley-Interscience, New York

  11. Konishi Y, Kawamura T, Asai S (1993) Ind Eng Chem Res 32:2888

    CAS  Google Scholar 

  12. Yitai Q, Yi X, Chuan H, Jing L, Zuyao C (1994) Mater Res Bull 29:953

    Article  CAS  Google Scholar 

  13. Li Y, Liao H, Qian Y (1998) Mater Res Bull 33:841

    Article  CAS  Google Scholar 

  14. Chen D, Xu R (1998) Mater Res Bull 33:1015

    Article  CAS  Google Scholar 

  15. Bae DS, Hau KS, Cho SB, Choi SH (1998) Mater Lett 37:255

    Article  CAS  Google Scholar 

  16. Fan R, Chen XH, Gui Z, Liu L, Chen ZY (2001) Mater Res Bull 36:497

    Article  CAS  Google Scholar 

  17. Gabrielli C (1981) Identification of electrochemical processes by frequency response analysis. Solartron, France

  18. MacDonald JR (1987) Impedance spectroscopy. Wiley-Interscience, New York, p 84

  19. Petzold W, Petzold A (1958) Z Anal Chem 161:241

    CAS  Google Scholar 

  20. Riegel ER, Schwartz RD (1952) Anal Chem 14:1803

    Google Scholar 

  21. Klug HP, Alexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials, 2nd edn. Wiley-Interscience, New York, p 656

  22. Dordor P, Marquestant E, Villeneuve G (1980) Rev Phys Appl 15:1607

    CAS  Google Scholar 

  23. Pourbaix M (1963) Atlas d’équilibres électrochimiques. Gauthier-Villars, Paris

  24. Brousse T, Bélanger D (2003) Electrochem Solid-State Lett 6:A244

  25. Franger S, Bach S, Pereira-Ramos J-P, Baffier N (2000) Ionics 6:470

    CAS  Google Scholar 

  26. Franger S, Bach S, Farcy J, Pereira-Ramos J-P, Baffier N (2002) J Power Sources 109:262

    Article  CAS  Google Scholar 

  27. Pascal P (1963) Nouveau traité de chimie minérale, vol XVI. Masson, Paris

  28. Michel A, Bénard J (1964) Chimie minérale. Masson, Paris, p 644

  29. Bard AJ, Faulkner LR (1980) Electrochemical methods. Wiley-Interscience, New York

  30. Sarrazin J, Verdaguer M (1998) Oxydoréduction. Ellipses, Paris, p 216

  31. Wang L, Li J, Ding W, Zhou T, Liu B, Zhong W, Wu J, Du Y (1999) J Magn Magn Mater 207:111

    Article  CAS  Google Scholar 

  32. Ziese M, Höhne R, Hong NH, Dienelt J, Zimmer K, Esquinazi P (2002) J Magn Magn Mater 242–245:450

  33. Hsu J-H, Chen S-Y, Chang C-R (2002) J Magn Magn Mater 242–245:479

Download references

Acknowledgements

The authors are grateful to Mr. Christian Haut (ICMMO, Université Paris Sud – XI), who provided the SEM micrographs of magnetite.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Franger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franger, S., Berthet, P. & Berthon, J. Electrochemical synthesis of Fe3O4 nanoparticles in alkaline aqueous solutions containing complexing agents. J Solid State Electrochem 8, 218–223 (2004). https://doi.org/10.1007/s10008-003-0469-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-003-0469-6

Keywords

Navigation