Skip to main content
Log in

Transport and electrocatalytic properties of La0.3Sr0.7Co0.8Ga0.2O3−δ membranes

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Incorporation of gallium into the perovskite lattice of La0.3Sr0.7CoO3−δ leads to increasing unit cell volume and to decreasing thermal expansion, total conductivity and oxygen permeability. At 973–1223 K, the oxygen permeation fluxes through La0.3Sr0.7Co0.8Ga0.2O3−δ ceramics with 96.5% density are determined by the bulk ionic conduction and surface exchange rates. The total conductivity of La0.3Sr0.7Co0.8Ga0.2O3−δ, predominantly p-type electronic, exhibits an apparent pseudometallic behavior due to oxygen losses on heating, whereas the p(O2) dependencies of the conductivity and Seebeck coefficient suggest a small-polaron mechanism of hole transport. The average thermal expansion coefficients in air are 15.9×10−6 K−1 at 360–710 K and 27.9×10−6 K−1 at 710–1030 K. On decreasing oxygen pressure down to 4–30 Pa at 973–1223 K, perovskite-type La0.3Sr0.7Co0.8Ga0.2O3−δ transforms into a brownmillerite-like modification, whose electrical properties are essentially p(O2) independent. Further reduction results in the decomposition of the brownmillerite into a multiphase oxide mixture at p(O2)=8×10−10–3×10−4 Pa, and then in the segregation of metallic cobalt. Due to surface-limited oxygen transport, La0.3Sr0.7Co0.8Ga0.2O3−δ membranes are, however, kinetically stable under an air/CH4 gradient up to 1223 K. The conversion of dry methane in model membrane reactors increases with oxygen permeation flux and temperature, but yields high CO2 concentrations (>90%), indicating a dominant role of complete CH4 oxidation on the membrane surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 A
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bouwmeester HJM, Burggraaf AJ (1996) Dense ceramic membranes for oxygen separation. In: Burggraaf AJ, Cot L (eds) Fundametals of inorganic membrane science and technology. Elsevier, Amsterdam, pp 435–528

  2. Kilner J, Benson S, Lane J, Waller D (1997) Chem Ind 17:907

    Google Scholar 

  3. Mazanec TJ (1994) Solid State Ionics 70/71:11

  4. Dyer PN, Richards RE, Russek SL, Taylor DM (2000) Solid State Ionics 134:21

    Article  CAS  Google Scholar 

  5. van Doorn RHE (1996) PhD Thesis. University of Twente, Enschede, Netherlands

  6. Schwartz M, White JH, Sammells AF (2001) US Patent 6214757

  7. Patrakeev MV, Mitberg EB, Lakhtin AA, Leonidov IA, Kozhevnikov VL, Kharton VV, Avdeev M, Marques FMB (2002) J Solid State Chem 167:203

    Article  CAS  Google Scholar 

  8. Kharton VV, Yaremchenko AA, Viskup AP, Patrakeev MV, Leonidov IA, Kozhevnikov VL, Figueiredo FM, Shaulo AL, Naumovich EN, Marques FMB (2002) J Electrochem Soc 149:E125

    Article  CAS  Google Scholar 

  9. Kharton VV, Yaremchenko AA, Patrakeev MV, Naumovich EN, Marques FMB (2003) J Eur Ceram Soc 23:1417

    Article  CAS  Google Scholar 

  10. Kharton VV, Naumovich EN, Nikolaev AN (1996) J Membrane Sci 111:149

    Article  CAS  Google Scholar 

  11. Kharton VV, Kovalevsky AV, Yaremchenko AA, Figueiredo FM, Naumovich EN, Shaulo AL, Marques FMB (2002) J Membrane Sci 195:277

    Article  CAS  Google Scholar 

  12. Kharton VV, Yaremchenko AA, Naumovich EN (1999) J Solid State Electrochem 3:303

    Article  CAS  Google Scholar 

  13. Tretiakov YuD (1974) Chemistry of nonstoichiometric oxides. Moscow State University, Moscow

  14. Yaremchenko AA, Kharton VV, Patrakeev MV, Frade JR (2003) J Mater Chem 13:1136

    Article  CAS  Google Scholar 

  15. Chick LA, Pederson LR, Maupin GD, Bates JL, Thomas LE, Exarhos GJ (1990) Mater Lett 10:6

    Article  CAS  Google Scholar 

  16. ten Elshof JE, Bouwmeester HJM, Verweij H (1995) Appl Catal A 130:195

    Article  Google Scholar 

  17. Xu SJ, Thomson WJ (1997) AIChE J 43:2731

    CAS  Google Scholar 

  18. Shannon RD (1976) Acta Crystallogr A32:751

    CAS  Google Scholar 

  19. Ullmann H, Trofimenko N, Tietz F, Stover D, Ahmad-Khanlou A (2000) Solid State Ionics 138:79

    CAS  Google Scholar 

  20. Cherepanov VA, Gavrilova LYa, Barkhatova LYu, Voronin VI, Trifonova MV, Bukhner OA (1998) Ionics 4:309

    CAS  Google Scholar 

  21. Petrov AN, Cherepanov VA, Zuev AYu (1987) Zh Fiz Khim 61:630

    CAS  Google Scholar 

  22. Tikhonovich VN, Naumovich EN, Logvinovich DI, Kharton VV, Vecher AA (2003) J Solid State Electrochem 7:77

    CAS  Google Scholar 

  23. Liu L-M, Lee TH, Qiu L, Yang YL, Jacobson AJ (1996) Mater Res Bull 31:29

    Article  CAS  Google Scholar 

  24. Ramadass N (1978) Mater Sci Eng 36:231

    Article  CAS  Google Scholar 

  25. Kofstad P (1972) Nonstoichiometry, diffusion and electrical conductivity in binary metal oxides. Wiley-Interscience, New York

  26. Jonker GH (1968) Philips Res Rep 23:131

    Google Scholar 

  27. Kobayashi K, Yamaguchi S, Tsunoda T, Imai Y (2001) Solid State Ionics 144:123

    Article  CAS  Google Scholar 

  28. Mitberg EB, Patrakeev MV, Lakhtin AA, Leonidov IA, Kozhevnikov VL, Poeppelmeier KR (1998) J Alloys Compds 274:103

    Article  CAS  Google Scholar 

  29. van Doorn RHE, Fullarton IC, de Souza RA, Kilner JA, Bouwmeester HJM, Burggraaf AJ (1997) Solid State Ionics 96:1

    Article  Google Scholar 

  30. Stevenson JW, Armstrong TR, Carneim RD, Pederson LR, Weber WJ (1996) J Electrochem Soc 143:2722

    CAS  Google Scholar 

  31. Kruidhof H, Bouwmeester HJM, van Doorn RHE, Burggraaf AJ (1993) Solid State Ionics 63–65:816

  32. ten Elshof JA, van Hassel BA, Bouwmeester HJM (1995) Catal Today 25:397

    Article  Google Scholar 

  33. Steghuis AG, van Ommen JG, Seshan K, Lercher JA (1997) Stud Surf Sci Catal 107:403

    CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the NATO Science for Peace program (project 978002), the FCT, Portugal (POCTI program and Projects BD/6827/2001 and BPD/11606/2002), and the INTAS (project 00276). Experimental contributions made by A. Kovalevsky and N. Vyshatko are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Kharton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kharton, V.V., Tsipis, E.V., Marozau, I.P. et al. Transport and electrocatalytic properties of La0.3Sr0.7Co0.8Ga0.2O3−δ membranes. J Solid State Electrochem 9, 10–20 (2005). https://doi.org/10.1007/s10008-004-0530-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-004-0530-0

Keywords

Navigation