Skip to main content
Log in

Growth of V2O5 nanorods from ball-milled powders and their performance in cathodes and anodes of lithium-ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The two-stage procedure of ball milling and annealing in air represents a prospective method of preparing nanorods of V2O5 with electrochemical properties suitable for the application in lithium-ion batteries. Commercially purchased V2O5 powder is milled in a ball mill as the first step of the synthesis. The as-milled precursor is subsequently annealed in air to produce the morphology of nanorods via solid-state recrystallization. We have recently investigated intermediate stages of the formation of nanorods, and this paper summarizes the synthesis method including the description of the current understanding of the growth mechanism. The obtained V2O5 nanorods have been assessed as an electrode material for both anodes and cathodes of lithium-ion batteries. When used in cathodes, the nanorods demonstrate a better retention of capacity upon cycling than that of the commercially available powder of V2O5. When used in anodes, the performances of nanorods and the reference V2O5 powder are similar to a large extent, which is related to a different operating mechanism of V2O5 in anodes. The experimentally observed capacity of V2O5 nanorods in an anode has stabilized at the level of about 450 mAh/g after few cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wang Y, Cao GZ (2006) Chem Mater 18:2787–2804

    Article  Google Scholar 

  2. Wang Y, Cao GZ (2008) Adv Mater 20:2251–2269

    Article  CAS  Google Scholar 

  3. Tranchant A, Messina R, Perrichon J (1980) J Electroanal Chem 113:225–232

    Article  CAS  Google Scholar 

  4. Liu J, Xia H, Xue DF, Liu L (2009) J Am Chem Soc 131:12086–12087

    Article  CAS  Google Scholar 

  5. Glushenkov AM, Stukachev VI, Hassan MF, Kuvshinov GG, Liu HK, Chen Y (2008) Cryst Growth Des 8:3661–3665

    Article  CAS  Google Scholar 

  6. Glushenkov AM, Stukachev VI, Hassan MF, Kuvshinov GG, Liu HK, Chen Y (2010) Proceedings of 2009 MRS Spring Meeting, in press

  7. Occhiuzzi M, Cordischi D, Dragone R (2005) J Solid State Chem 178:1551–1558

    Article  CAS  Google Scholar 

  8. Delmas C, Cognac-Auradou H, Cocciantelli JM, Menetrier M, Doumerc JP (1994) Solid State Ionics 69:257–264

    Article  CAS  Google Scholar 

  9. Ban CN, Chernova NA, Whittingham MS (2009) Electrochem Commun 11:522–525

    Article  CAS  Google Scholar 

  10. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Ionics 6:321–330

    Article  CAS  Google Scholar 

  11. Chan CK, Peng H, Twesten RD, Jarausch K, Zhang XF, Cui Y (2007) Nano Lett 7:490–495

    Article  CAS  Google Scholar 

  12. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496–499

    Article  CAS  Google Scholar 

  13. Debart A, Dupont L, Poizot P, Leriche JB, Tarascon JM (2001) J Electrochem Soc 148:A1266–A1274

    Article  CAS  Google Scholar 

  14. Anani A, Crouch-Baker S, Huggins RA (1987) J Electrochem Soc 134:3098–3102

    Article  CAS  Google Scholar 

  15. Denis S, Baudrin E, Touboul M, Tarascon JM (1997) J Electrochem Soc 144:4099–4109

    Article  CAS  Google Scholar 

  16. Leroux F, Gowards GR, Power WP, Nazar LF (1998) Electrochem Solid State Lett 1:255–258

    Article  CAS  Google Scholar 

  17. Leroux F, Piffard Y, Ouvrard G, Mansot JL, Guyomard D (1999) Chem Mater 11:2948–2959

    Article  CAS  Google Scholar 

  18. Ceder G, Aydinol MK, Kohan AF (1997) Comput Mater Sci 8:161–169

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported in part by the Australian Research Council under the Centre of Excellence and Discovery programs. The authors thank the staff of the Electron Microscopy Unit at the Australian National University (Canberra, Australia) for their assistance with SEM and TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey M. Glushenkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glushenkov, A.M., Hassan, M.F., Stukachev, V.I. et al. Growth of V2O5 nanorods from ball-milled powders and their performance in cathodes and anodes of lithium-ion batteries. J Solid State Electrochem 14, 1841–1846 (2010). https://doi.org/10.1007/s10008-010-1016-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1016-x

Keywords

Navigation