Skip to main content

Advertisement

Log in

Electrode materials for aqueous rechargeable lithium batteries

  • Review
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

In this review, we describe briefly the historical development of aqueous rechargeable lithium batteries, the advantages and challenges associated with the use of aqueous electrolytes in lithium rechargeable battery with an emphasis on the electrochemical performance of various electrode materials. The following materials have been studied as cathode materials: LiMn2O4, MnO2, LiNiO2, LiCoO2, LiMnPO4, LiFePO4, and anatase TiO2. Addition of certain additives like TiS2, TiB2, CeO2, etc. is found to increase the performance of MnO2 cathode. The following materials have been studied as anode materials: VO2 (B), LiV3O8, LiV2O5, LiTi2(PO4)3, TiP2O3, and very recently conducting polymer, polypyrrole (PPy). The cell PPy/LiCoO2, constructed using polypyrrole as anode delivers an average voltage of 0.86 V with a discharge capacity of 47.7 mA h g−1. It retains the capacity for first 120 cycles. The cell, LiTi2(PO4)3/1 M Li2SO4/LiMn2O4, delivers a capacity of 40 mA h g−1 and specific energy of 60 mW h g−1 with an output voltage of 1.5 V over 200 charge–discharge cycles. An aqueous lithium cell constructed using MWCNTs/LiMn2O4 as cathode material is found to exhibit more than 1,000 cycles with good rate capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Pasquier AD, Plitz I, Menocal S, Amatucci G (2003) J Power Sources 115:171

    Article  Google Scholar 

  2. Chau KT, Wong YS, Chan CC (1999) Energy Convers Manage 40:1021

    Article  CAS  Google Scholar 

  3. Frost PC (1999) J Power Sources 78:256

    Article  CAS  Google Scholar 

  4. Gifford P, Adams J, Corrigan D, Venkatesan S (1999) J Power Sources 80:157

    Article  CAS  Google Scholar 

  5. Wade EJ (1902) Secondary batteries: the electrician, London. Van Nostrand, New York

    Google Scholar 

  6. Barak M (ed) (1980) Electrochemical power sources. Peter Peregrins, London

    Google Scholar 

  7. Wakihara M (2001) Mater Sci Eng Rep 33:109

    Article  Google Scholar 

  8. Li W, Dahn JR, Wainwright DS (1994) Science 264:1115

    Article  CAS  Google Scholar 

  9. Glanze J (1994) Science 264:1084

    Article  Google Scholar 

  10. Li W, Dahn JR (1995) J Electrochem Soc 142:1742

    Article  CAS  Google Scholar 

  11. Zhang M, Dahn JR (1996) J Electrochem Soc 143:2730

    Article  CAS  Google Scholar 

  12. Li W, Mckinnon WR, Dahn JR (1994) J Electrochem Soc 141:2310

    Article  CAS  Google Scholar 

  13. Mckinnon WR, Hearing RR (2007) In: White RE, Bockris J‘O’M, Conway BE (eds) Modern aspects of electrochemistry. No.15. Plenum press, New York

    Google Scholar 

  14. Lee J-W, Pyun S-Il (2004) Electrochim Acta 49:753

    Article  CAS  Google Scholar 

  15. Aurbach D, Gamolsky K, Markovsky B, Salitra G, Gofer Y, Heider U, Oesten R, Schmidt M (2000) J Electrochem Soc 147:1322

    Article  CAS  Google Scholar 

  16. Zhang SS, Xu K, Jow TR (2002) J Electrochem Soc 149:A1521

    Article  CAS  Google Scholar 

  17. Nakayama N, Nozaw T, Iriyama Y, Abe T, Ogumi Z, Kikuchi K (2007) J Power Sources 174:695

    Article  CAS  Google Scholar 

  18. Bruce PG, Saidi MY (1992) J Electroanal Chem 322:93

    Article  CAS  Google Scholar 

  19. Nakayama N, Nozawa T, Iriyama Y, Abe T, Ogumi Z, Kikuchi K (2007) J Power Sources 174:695

    Article  CAS  Google Scholar 

  20. Nakayama N, Yamada I, Huang Y, Nozawa T, Iriyama Y, Abe T, Ogumi Z (2009) Electrochim Acta 54:3428

    Article  CAS  Google Scholar 

  21. Thackery MM, David WIF, Bruce PG, Goodenough JB (1983) Mater Res Bull 18:461

    Article  Google Scholar 

  22. Weiss M, Gunther W, Schollhorn R (1998) Phys C 304:156

    Article  CAS  Google Scholar 

  23. Schlorb H, Bungs M, Plieth W (1997) Electrochim Acta 42:2619

    Article  CAS  Google Scholar 

  24. Vivier CC, Bash S, Ramos JP (1999) Electrochim Acta 44:2705

    Article  Google Scholar 

  25. Abou-El-Sherbini KS, Askar MH (2003) J Solid State Electrochem 7:435

    Article  CAS  Google Scholar 

  26. Jayalakshmi M, Mohan Rao M, Scholz F (2003) Langmuir 19:8403

    Article  CAS  Google Scholar 

  27. Li N, Patrissi CJ, Che G, Martin CR (2000) J Electrochem Soc 147:2044

    Article  CAS  Google Scholar 

  28. Sinha NN, Ragupathy P, Vasan HN, Munichandraiah N (2008) Int J Electrochem Soc 3:691

    CAS  Google Scholar 

  29. Eftekhari A (2001) Electrochem Acta 47:495

    Article  CAS  Google Scholar 

  30. Chen S, Mi C, Su L, Gao B, Fu Q, Zhang X (2009) J Appl Electrochem 39:943

    Google Scholar 

  31. Hui Y, Huaquan Y, Yinlin L, Neng L, Bingxiong L (1996) J Power Sources 62:223

    Article  CAS  Google Scholar 

  32. Wu M-S, Lee R-H (2008) J Power Sources 176:363

    Article  CAS  Google Scholar 

  33. Mohan Rao M, Jayalakshmi M, SchaÈ O, Guth U, Wulf H, Scholz F (1999) J Solid State Electrochem 4:17

    Article  Google Scholar 

  34. Lee JH, Han KS, Lee BJ, Seo S, Yoshimura M (2004) Electrochim Acta 50:467

    Article  CAS  Google Scholar 

  35. Wang YG, Luo JY, Wang CX, Xia YY (2006) J Electrochem Soc 153:A1425

    Article  CAS  Google Scholar 

  36. Wang G, Fu L, Zhao N, Yang L, Wu Y, Wu H (2007) Angew Chem Int Ed 46:295

    Article  Google Scholar 

  37. Wang GJ, Zhao NH, Yang LC, Wu YP, Wu HQ, Holze R (2007) Electrochim Acta 52:4911

    Article  CAS  Google Scholar 

  38. Ruffo R, Wessels C, Huggins RA, Cui Y (2009) Electrochem Commun 11:247

    Article  CAS  Google Scholar 

  39. Wang GJ, Qua QT, Wang B, Shi Y, Tian S, Wu YP, Holze R (2009) Electrochim Acta 54:1199

    Article  CAS  Google Scholar 

  40. Deutscher RL, Florence TM, Woods R (1995) J Power Sources 55:41

    Article  CAS  Google Scholar 

  41. Minakshi M, Singh P, Issa TB, Thurgate S, Marco RD (2004) J Power Sources 130:254

    Article  Google Scholar 

  42. Minakshi M, Singh P, Issa TB, Thurgate S, Marco RD (2004) J Power Sources 138:319

    Article  CAS  Google Scholar 

  43. Minakshi M, Singh P, Issa TB, Thurgate S, Marco RD (2006) J Power Sources 153:165

    Article  CAS  Google Scholar 

  44. Levi E, Zingrad E, Teller H, Levi MD, Aurbach D, Mengeritsky E, Elster E, Dan P, Granot E, Yamin H (1997) J Electrochem Soc 144:4133

    Article  CAS  Google Scholar 

  45. Minakshi M, Singh P, Mitchell DRG, Issa TB, Prince K (2007) Electrochim Acta 52:7007

    Article  CAS  Google Scholar 

  46. Minakshi M, Mitchell D, Singh P, Thurgate S (2006) Australian Institute of Physics 17th National Congress 2006, Brisbane, page 3

  47. Yao YF, Gupta N, Wroblowa HS (1987) J Electroanal Chem 223:107

    Article  CAS  Google Scholar 

  48. Minakshi M, Mitchell DRG, Prince K (2008) Solid State Ion 179:355

    Article  CAS  Google Scholar 

  49. Minakshi M, Mitchell DRG (2008) Electrochim Acta 53:6323

    Article  CAS  Google Scholar 

  50. Qu DY (1999) J Appl Electrochem 29:511

    Article  CAS  Google Scholar 

  51. Minakshi M, Mitchell DRG, Carter ML, Appadoo D, Nallathamby K (2009) Electrochim Acta 54:3244

    Article  CAS  Google Scholar 

  52. Minakshi M, Nallathamby K, Mitchell DRG (2009) J Alloys Compds 479:87

    Article  CAS  Google Scholar 

  53. Minakshi M, Singh P, Issa TB, Thurgate S (2006) J Appl Electrochem 36:599

    Article  Google Scholar 

  54. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188

    Article  CAS  Google Scholar 

  55. Jiang J, Dahn JR (2004) Electrochem Commn 6:39

    Article  CAS  Google Scholar 

  56. Takahashi M, Tobishima SI, Takei K, Sakurai Y (2002) Solid State Ion 148:283

    Article  CAS  Google Scholar 

  57. Minakshi M, Singh P, Thurgate S, Prince K (2006) J Power Sources 158:646

    Article  Google Scholar 

  58. Mi CH, Zhang XG, Li HL (2007) J ElectroanalChem 602:245

    Article  CAS  Google Scholar 

  59. Sauvage F, Laffont L, Tarascon JM, Baudrine E (2008) J Power Sources 175:495

    Article  CAS  Google Scholar 

  60. Liu Y, Mi C, Yuan C, Zhang X (2009) J Electroanl Chem 628:73

    Article  CAS  Google Scholar 

  61. Minakshi M, Singh P, Thurgate S, Prince K (2006) Electrochem Solid State Lett 9(10):A471

    Article  CAS  Google Scholar 

  62. Wang F, Liu Y, Liu C-Y (2010) Electrochim Acta 55:2662

    Article  CAS  Google Scholar 

  63. Kohler J, Makihara H, Uegaito H, Inoue H, Toki M (2000) Electrochim Acta 46:59

    Article  CAS  Google Scholar 

  64. Wang GJ, Zhang HP, Fu LJ, Wang B, Wu YP (2007) Electrochem Commun 9:1873

    Article  CAS  Google Scholar 

  65. Wang GJ, Qu QT, Wang B, Shi Y, Tian S, Wu YP, Holze R (2009) J Power Sources 189:503

    Article  CAS  Google Scholar 

  66. Wang H, Zeng Y, Huang K, Liu S, Chen L (2007) Electrochim Acta 52:5102

    Article  CAS  Google Scholar 

  67. Wang H, Huang K, Zeng Y, Zhao F, Chen L (2007) Electrochem Solid-State Lett 10(9):A199

    Article  CAS  Google Scholar 

  68. Stojkovic I, Cvjeticanin N, Pašti I, Mitric M, Mentus S (2009) Electrochem Commun 11:512

    Article  Google Scholar 

  69. Wang Y, Shang H, Chou T, Cao G (2005) J Phys Chem B 109:11361

    Article  CAS  Google Scholar 

  70. Ng SH, Chew SY, Wang J, Wexler D, Tournayre Y, Konstantinov K, Liu HK (2007) J Power Sources 174:1032

    Article  CAS  Google Scholar 

  71. Wang GX, Zhong S, Bradhurst DH, Dou SX, Liu HK (1998) J Power Sources 74:198

    Article  CAS  Google Scholar 

  72. Reiman KH, Brace KM, Gordon-smith TJ, Nandhakumar I, Attard GS, Owen JR (2006) Electrochem Commun 8:517

    Article  CAS  Google Scholar 

  73. Wu M-S, Wang M-J, Jow JJ, Yang W-D, Hsieh C-Y, Tsai H-M (2008) J Power Sources 185:1420

    Article  CAS  Google Scholar 

  74. Wang H, Huang K, Zeng Y, Yang S, Chena L (2007) Electrochim Acta 52:3280

    Article  CAS  Google Scholar 

  75. Luo JY, Xia YY (2007) Adv Funct Mater 17:3877

    Article  CAS  Google Scholar 

  76. Liu X-H, Saito T, Doi T, Okada S, Yamaki J-I (2009) J Power Sources 189:706

    Article  CAS  Google Scholar 

  77. Wang GJ, Yang LC, Qu QT, Wang B, Wu YP, Holze R (2010) J Sold Sate Electrochem 14:865

    Article  CAS  Google Scholar 

  78. Feldberg SW (1984) J Am Chem Soc 106:4671

    Article  CAS  Google Scholar 

  79. Meada Y (1990) J Electrochem Soc 137:3047

    Article  Google Scholar 

Download references

Acknowledgment

Financial support from the Department of Science and Technology, Government of India is greatly acknowledged. The authors wish to thank Sri. A. V. S. Murthy, honorary secretary, Rashtreeya Sikshana Samiti Trust, Bangalore and Dr. P. Yashoda, Principal, SSMRV Degree College, Bangalore for their continuous support and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Suresh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manjunatha, H., Suresh, G.S. & Venkatesha, T.V. Electrode materials for aqueous rechargeable lithium batteries. J Solid State Electrochem 15, 431–445 (2011). https://doi.org/10.1007/s10008-010-1117-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-010-1117-6

Keywords

Navigation