Skip to main content
Log in

Electrochemical studies of LiMnPO4 as aqueous rechargeable lithium–ion battery electrode

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A study of the electrochemical behavior of LiMnPO4 prepared by RAPET method in different aqueous electrolytes using cyclic voltammetry (CV), galvanostatic charge–discharge experiments, and electrochemical impedance spectroscopy is reported. CV peak current is proportional to the square root of scan rate under 0.2 mV s−1. The system satisfied the required conditions for a reversible system with a resistive behavior. LiMnPO4 was found to undergo proton insertion at lower concentrations of electrolyte. At higher concentrations or saturated solutions of electrolytes, lithium insertion/de-insertion becomes the main reaction though the effect of proton insertion/de-insertion reaction cannot be ignored. Electrochemical insertion/de-insertion of lithium in LiMnPO4 was studied using EIS technique. The kinetic parameter, charge transfer resistance (R ct), obtained by simulating the experimental impedance data with an equivalent circuit showed a minimum at the potential close to the CV peak potential. The cell LiTi2(PO4)3/5 M LiNO3/LiMnPO4 delivers a discharge capacity of 84 mAh g−1 in the first cycle at an applied current of 0.2 mA cm−2 and it retains its initial capacity over 50 cycles with good rate capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188–1194

    Article  CAS  Google Scholar 

  2. Manjunatha H, Suresh GS, Venkatesha TV (2011) J Solid State Electrochem 15:431–445

    Article  CAS  Google Scholar 

  3. Yamada A, Hosoya M, Chung S-C, Hinokuma K, Kudo Y, Liu K-Y (2002) In: Manthiram A, Kumta PN, Sundaram SK, Ceder G (eds) Materials for electrochemical energy conversion and storage. American Ceramic Society, Westerville, pp 189–204

    Google Scholar 

  4. Yamada A, Hosoya M, Chung S-C, Hinokuma K, Kudo Y, Liu K-Y (2001) In: Nadri G, Koetz R, Dcrosatti B, Moro PA, Takeuchi ES (eds) Advanced batteries and supercapacitors. The Electrochemical Society, Pennington

    Google Scholar 

  5. MacNeil DD, Lu Z, Chen Z, Dahn JR (2002) J Power Sources 108:8–114

    Article  CAS  Google Scholar 

  6. Yamada A, Chung S-C, Hinokuma K (2001) J Electrochem Soc 148:A224–A229

    Article  CAS  Google Scholar 

  7. Delacourt C, Poizot P, Morcrette M, Tarascan JM, Masquelier C (2004) Chem Mater 16:93–99

    Article  CAS  Google Scholar 

  8. Gummov RJ, Thackery MM (1993) J Electrochem Soc 140:3365–3368

    Article  Google Scholar 

  9. Guohua L, Ikuta H, Uchida T, Wakihara M (1996) J Electrochem Soc 143:178–182

    Article  Google Scholar 

  10. Li G, Azuma H, Tohda M (2002) Electrochem Solid-State Lett 5:A135–A137

    Article  CAS  Google Scholar 

  11. Yamada A, Chung S-C (2001) J Electrochem Soc 148:A960–A967

    Article  CAS  Google Scholar 

  12. Bramnik NN, Ehrenberg H (2008) J Alloys Compd 464:259–264

    Article  CAS  Google Scholar 

  13. Bakenov Z, Taniguchi I (2010) Electrochem Commun 12:75–78

    Article  CAS  Google Scholar 

  14. Huang H, Yin S-C, Nazar LF (2001) Electrochem Solid-State Lett 4:A170–A172

    Article  CAS  Google Scholar 

  15. Minakshi M, Singh P, Thurgate S, Prince K (2006) Electrochem Solid-State Lett 9:A471–A474

    Article  CAS  Google Scholar 

  16. Minakshi M, Pandey A, Blackford M, Ionescu M (2010) Energy Fuel 24:6193–6197

    Article  CAS  Google Scholar 

  17. Pol VG, Pol SV, Gedanken A, Kessler VG, Seisenbaeva GA, Sung M, Asai S (2005) J Phys Chem B 109:6121–6125

    Article  CAS  Google Scholar 

  18. Pol SV, Pol VG, Kessler VG, Seisenbaeva GA, Sung M, Asai S, Gedanken A (2004) J Phys Chem B 108:6322–6327

    Article  CAS  Google Scholar 

  19. Pol SV, Pol VG, Kessler VG, Seisenbaeva GA, Sung M, Asai S, Gedanken A (2004) Chem Mater 16:1793–1798

    Article  CAS  Google Scholar 

  20. Pol VG, Pol SV, Gedanken A (2008) J Phys Chem C 112:6627–6637

    Article  CAS  Google Scholar 

  21. Chen G, Richardson TJ (2009) J Electrochem Soc 156:A756–A762

    Article  CAS  Google Scholar 

  22. Delacourt C, Poizot P, Morcrette M, Tarascon JM, Masquelier C (2004) Chem Mater 16:93–99

    Article  CAS  Google Scholar 

  23. Yu DYW, Fietzek C, Weydanz W, Donoue K, Inoue T, Kurokawa H, Fujitani S (2007) J Electrochem Soc 154:A253–A257

    Article  CAS  Google Scholar 

  24. Molenda J, Ojczyk W, Swierczek K, Zajac W, Liu R-S Krok F Dygas J (2006) Solid State Ionics 177:2617–2624

    Article  CAS  Google Scholar 

  25. Lee J-W, Pyun S-II (2004) Electrochim Acta 49:753–761

    Article  CAS  Google Scholar 

  26. Manjunatha H, Mahesh KC, Suresh GS, Venkatesha TV (2011) Electrochim Acta 56:1439–1446

    Article  CAS  Google Scholar 

  27. Shivashankaraiah RB, Manjunatha H, Mahesh KC, Suresh GS, Venkatesha TV (2011) J Solid State. Electrochem. doi:10.1007/s10008-011-1520-7

  28. Manjunatha H, Venkatesha TV, Suresh GS (2011) Electrochim Acta 58:247–257

    Google Scholar 

  29. Sinha NN, Ragupathy P, Vasan HN, Munichandraiah N (2008) Int J Electrochem Soc 3:691–710

    CAS  Google Scholar 

  30. Ho C, Raistrick ID, Huggins RA (1980) J Electrochem Soc 127:343–350

    Article  CAS  Google Scholar 

  31. Wang GJ, Qu QT, Wang B, Shi Y, Tian S, Wu YP, Holze R (2009) J Power Sources 189:503–506

    Article  CAS  Google Scholar 

  32. Wang GJ, Qu QT, Wang B, Shi Y, Tian S, Wu YP, Holze R (2009) Electrochim Acta 54:1199–1203

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the Department of Science and Technology, Government of India. They wish to thank Sri. A. V. S. Murthy, honorary secretary, Rashtreeya Sikshana Samiti Trust, Bangalore, and Dr. P. Yashoda, Principal, S.S.M.R.V. Degree College, Bangalore, for their support and encouragement. They thank the Department of Chemistry, St. Joseph’s College, for XRD data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Suresh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manjunatha, H., Venkatesha, T.V. & Suresh, G.S. Electrochemical studies of LiMnPO4 as aqueous rechargeable lithium–ion battery electrode. J Solid State Electrochem 16, 1941–1952 (2012). https://doi.org/10.1007/s10008-011-1593-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1593-3

Keywords

Navigation