Skip to main content
Log in

Poly(brilliant green)/carbon nanotube-modified carbon film electrodes and application as sensors

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Poly(brilliant green) (PBG) films were formed on carbon film electrodes (CFE) by electropolymerisation of brilliant green monomer using potential cycling or at fixed potential from different pH solutions. The modified electrodes, PBG/CFE, were characterised by cyclic voltammetry (CV) in electrolytes of different pH by electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). In order to increase the stability of the polymer film and enhance the response, multi-walled carbon nanotubes (MWCNTs) were first deposited on CFE and then PBG was formed on top, PBG/CNT/CFE. The modified electrodes were applied to the amperometric determination of ascorbic acid (AA) in phosphate buffer pH 7.0 at 0.0 V vs. saturated calomel electrode (SCE) and the results were compared, the presence of CNT leading to a significant increase in sensitivity. An interference study was carried out and good separation between AA and dopamine (DA) peaks was achieved that led to the successful determination of DA without interferences. Other interferents: aspirin, acetaminophen, salicylic acid and uric acid exhibited no response on the PBG/CNT/CFE. Determination of AA in pharmaceutical samples was successfully performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Karyakin AA, Karyakina EE, Schmidt H-L (1999) Electroanalysis 11:149–155

    Article  CAS  Google Scholar 

  2. Barsan MM, Pinto EM, Brett CMA (2008) Electrochim Acta 53:3973–3982

    Article  CAS  Google Scholar 

  3. Wan Q, Wang X, Wang X, Yang N (2006) Polymer 47:7684–7692

    Article  CAS  Google Scholar 

  4. Ghica ME, Brett CMA (2009) J Electroanal Chem 629:35–42

    Article  CAS  Google Scholar 

  5. Barsan MM, Brett CMA (2008) Talanta 74:1505–1510

    Article  CAS  Google Scholar 

  6. Pauliukaite R, Ghica ME, Barsan MM, Brett CMA (2010) Anal Lett 43:1588–1608

    Article  CAS  Google Scholar 

  7. Karyakin AA, Karyakina EE, Schuhmann W, Schmidt H-L (1999) Electroanalysis 11:553–557

    Article  CAS  Google Scholar 

  8. Liu L, Zhao F, Xiao F, Zeng B (2009) Int J Electrochem Sci 4:525–534

    CAS  Google Scholar 

  9. Chen S-M, Chen J-Y, Thangamuthu R (2007) Electroanalysis 19:1531–1538

    Article  CAS  Google Scholar 

  10. Umasankar Y, Periasamy AP, Chen S-M (2010) Talanta 80:1094–1101

    Article  CAS  Google Scholar 

  11. Yang N, Wang X (2007) Electrochim Acta 52:6962–6968

    Article  CAS  Google Scholar 

  12. Fang C, Tang X, Zhou X (1999) Anal Sci J 15:41–46

    Article  CAS  Google Scholar 

  13. Umasankar Y, Periasamy AP, Chen S-M (2011) Anal Biochem 411:71–79

    Article  CAS  Google Scholar 

  14. Wang X, Yang N, Wan Q, Wang X (2007) Sens Actuator B-Chem 128:83–90

    Article  CAS  Google Scholar 

  15. Dai H (2002) Acc Chem Res 35:1035–1044

    Article  CAS  Google Scholar 

  16. Banks CE, Davies TJ, Wildgoose GC, Compton RG (2005) Chem Commun 829-841

  17. Pauliukaite R, Ghica ME, Fatibello-Filho O, Brett CMA (2010) Comb Chem High Throughput Screen 13:590–598

    Article  CAS  Google Scholar 

  18. Wang X, Cheng C, Dong R, Hao J (2012) J Solid State Electrochem 16:2815–2821

    Article  CAS  Google Scholar 

  19. Yang S, Yang R, Li G, Qu L, Li J, Yu L (2010) J Electroanal Chem 639:77–82

    Article  CAS  Google Scholar 

  20. Yáñez-Sedeño P, Riu J, Pingarron JM, Rius FX (2010) Trends Anal Chem 29:939–953

    Article  Google Scholar 

  21. Ghica ME, Pauliukaite R, Fatibello-Filho O, Brett CMA (2009) Sens Actuator B-Chem 142:308–315

    Article  CAS  Google Scholar 

  22. Rivas GA, Rubianes MD, Rodríguez MC, Ferreyra NF, Luque GL, Pedano ML, Miscoria SA, Parrado C (2007) Talanta 74:291–307

    Article  CAS  Google Scholar 

  23. Balasubramanian K, Burghard M (2006) Anal Bioanal Chem 385:452–468

    Article  CAS  Google Scholar 

  24. Wang J (2005) Electroanalysis 17:7–14

    Article  CAS  Google Scholar 

  25. Brett CMA, Angnes L, Liess H-D (2001) Electroanalysis 13:765–769

    Article  CAS  Google Scholar 

  26. Gouveia-Caridade C, Pauliukaite R, Brett CMA (2008) Electrochim Acta 53:6732–6739

    Article  CAS  Google Scholar 

  27. Pauliukaite R, Ghica ME, Barsan MM, Brett CMA (2007) J Solid State Electrochem 11:899–908

    Article  CAS  Google Scholar 

  28. Schlereth DD, Karyakin AA (1995) J Electroanal Chem 395:221–232

    Article  Google Scholar 

  29. Ghica ME, Brett CMA (2010) Microchim Acta 170:257–265

    Article  CAS  Google Scholar 

  30. Pauliukaite R, Ghica ME, Fatibello-Filho O, Brett CMA (2010) Electrochim Acta 55:6239–6247

    Article  CAS  Google Scholar 

  31. Carvalho RC, Gouveia-Caridade C, Brett CMA (2010) Anal Bioanal Chem 398:1675–1685

    Article  CAS  Google Scholar 

  32. Wang G, Hu N, Wang W, Li P, Gu H, Fang B (2007) Electroanalysis 22:2329–2334

    Article  Google Scholar 

  33. Jeyalakshmi SR, Kumar SS, Mathiyarasu J, Phani KLN, Yegnaraman V (2007) Indian J Chem 46A:957–961

    CAS  Google Scholar 

  34. Goyal RN, Gupta VK, Bachheti N, Sharma RA (2008) Electroanalysis 20:757–764

    Article  CAS  Google Scholar 

  35. Havens N, Trihn P, Kim D, Luna M, Wanekaya AK, Mugweru A (2010) Electrochim Acta 55:2186–2190

    Article  CAS  Google Scholar 

  36. Hathoot AA, Yousef US, Shatla AS, Abdel-Azzem M (2012) Electrochim Acta 85:531–537

    Article  CAS  Google Scholar 

  37. Ping J, Wang Y, Wu J, Ying Y, Ji F (2012) Food Chem 135:362–367

    Article  CAS  Google Scholar 

  38. Jirimali HD, Nagarale RK, Saravanakumar D, Lee JM, Shin W (2013) Carbohydr Polym 92:641–644

    Article  CAS  Google Scholar 

  39. Li NB, Ren W, Luo HQ (2008) J Solid State Electrochem 12:693–699

    Article  CAS  Google Scholar 

  40. Babaei A, Babazadeh M, Momeni HR (2011) Int J Electrochem Sci 6:1382–1395

    CAS  Google Scholar 

Download references

Acknowledgments

Financial support from Fundação para a Ciência e a Tecnologia (FCT), Portugal, PTDC/QUI-QUI/116091/2009, POCH, POFC-QREN (co-financed by FSE and European Community Fund FEDER/COMPETE), and FCT project PEst-C/EME/UI0285/2011 (CEMUC®—Research Unit 285), Portugal, are gratefully acknowledged. M.E.G. thanks FCT for postdoctoral fellowship SFRH/BPD/36930/2007. Y.W. thanks the European Commission for a grant under the Erasmus student exchange programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher M. A. Brett.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghica, M.E., Wintersteller, Y. & Brett, C.M.A. Poly(brilliant green)/carbon nanotube-modified carbon film electrodes and application as sensors. J Solid State Electrochem 17, 1571–1580 (2013). https://doi.org/10.1007/s10008-013-2040-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-013-2040-4

Keywords

Navigation