Skip to main content
Log in

Effect of lithium bis(trifluoromethylsulfonyl)imide salt-doped UV-cured glycidyl methacrylate

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A study is carried out on solid polymer electrolytes (SPEs) based on UV-curable glycidyl methacrylate (GMA) reactive mixtures to determine the lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) effect at different weight percentages. These polymeric systems are discussed considering several factors such as chemical interaction, structural and thermal properties, ionic conductivity, and lithium transference number. Samples are prepared using solution casting technique and are analyzed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and electrochemical impedance spectroscopy (EIS) characterization methodologies. FTIR spectra show that interaction occurs between electronegative atoms in polymer host and TFSI ions. XRD diffractogram indicates the amorphous aspect of SPEs, without the presence of LiTFSI peaks. Doping with LiTFSI salt reduces the glass transition temperature of SPEs and increased their ionic conductivity. Identified as the ideal salt concentration for poly(glycidyl methacrylate) (PGMA)-LiTFSI SPE system is 30 wt.% LiTFSI doping level, thus achieving a ionic conductivity of 3.69 × 10−8 S cm−1 at ambient temperature and 1.23 × 10−4 S cm−1 at 373 K. The ionic conductivity behavior obeys the Vogel–Tamman–Fulcher equation with an activation energy of 0.054 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bella F, Mobarak NN, Jumaah FN, Ahmad A (2015) From seaweeds to biopolymeric electrolytes for third generation solar cells: an intriguing approach. Electrochim Acta 151:306–311

    Article  CAS  Google Scholar 

  2. Kurc B, Jesionowski T (2015) Modified TiO2-SiO2 ceramic filler for a composite gel polymer electrolytes working with LiMn2O4. J Solid State Electrochem 19(5):1427–1435

    Article  CAS  Google Scholar 

  3. Jayathilake YMCD, Perera KS, Vidanapathirana KP (2015) Preparation and characterization of a polyacrylonitrile-based gel polymer electrolyte complexed with 1 methyl-3 propyl immidazolium iodide. J Solid State Electrochem. doi:10.1007/s10008-015-2834-7

    Google Scholar 

  4. Singh PK, Jadhav NA, Mishra SK, Singh UP, Bhattacharya B (2010) Application of ionic liquid doped solid polymer electrolyte. Ionics 16:645–648

    Article  CAS  Google Scholar 

  5. Lewandowski A, Swiderska A (2004) New composite solid electrolytes based on a polymer and ionic liquids. Solid State Ion 169:21–24

    Article  CAS  Google Scholar 

  6. Singh PK, Bhattacharya B, Mehra RM, Rhee HW (2011) Plasticizer doped ionic liquid incorporated solid polymer electrolytes for photovoltaic application. Curr Appl Phys 11:616–619

    Article  Google Scholar 

  7. Gerbaldi C (2010) All-solid-state lithium-based polymer cells for high-temperature applications. Ionics 16(9):777–786

    Article  CAS  Google Scholar 

  8. Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42(1):21–42

    Article  Google Scholar 

  9. Hodko D, Gamboa-Aldeco M, Murphy OJ (2009) Influence of photopolymerization conditions on the structure and property of poly (divinylbenzene) shells. J Mater Sci 13(7):1077–1089

    CAS  Google Scholar 

  10. Imperiyka M, Ahmad A, Hanifah SA, Rahman MYA (2013) Potential of UV-curable poly(glycidyl methacrylate-co-ethyl methacrylate) based solid polymer electrolyte for lithium ion battery application. Int J Electrochem Sci 8:10932–10945

    CAS  Google Scholar 

  11. Ahmad A, Rahman MYA, Su’ait MS, Hamzah H (2011) Studies of MG49-PMMA-LiBF4 based solid polymer electrolytes. Open Mater Sci J 5:170–177

    Article  CAS  Google Scholar 

  12. Abbrent S, Lindgren J, Tegenfeldt J, Wendsjö Å (1998) Gel electrolytes prepared from oligo(ethylene glycol)dimethacrylate: glass transition, conductivity and Li+-coordination. Electrochim Acta 43:1185–1191

    Article  CAS  Google Scholar 

  13. Hanifah SA, Hamzah N, Heng LY (2013) Rapid synthesis of magnetic microspheres poly(glycidyl methacrylate-co-styrene) by photopolymerization. Sains Malay 42(4):487–493

    CAS  Google Scholar 

  14. Su’ait MS, Ahmad A, Hamzah H, Noor SAM, Rahman MYA (2012) Preparation and characterization of blended solid polymer electrolyte MG49:PMMA–lithium tetrafluoroborate. J Solid State Electrochem 16(6):2275–2282

    Article  Google Scholar 

  15. Sun B, Mindemark J, Edström K, Brandell D (2014) Polycarbonate-based solid polymer electrolytes for Li-ion batteries. Solid State Ion 262:738–742

    Article  CAS  Google Scholar 

  16. Kotobuki M, Koishi M (2013) Preparation of Li1.5Al0.5Ti1.5(PO4)3 solid electrolyte via a sol–gel route using various Al sources. Ceram Int 39(4):4645–4649

    Article  CAS  Google Scholar 

  17. Imperiyka M, Ahmad A, Hanifah SA, Mohamed NS, Rahman MYA (2013) Investigation of plasticized UV-curable glycidyl methacrylate based solid polymer electrolyte for photochemical cell (PEC) application. Int J Hydro Energ 39:3018–3024

    Article  Google Scholar 

  18. Bella F, Imperiyka M, Ahmad A (2014) Photochemically produced quasi-linear copolymers for stable and efficient electrolytes in dye-sensitized solar cells. J Photochem Photobiol A 289:73–80

    Article  CAS  Google Scholar 

  19. Imperiyka M, Ahmad A, Hanifah SA, Bella F (2014) A UV-prepared linear polymer electrolyte membrane for dye-sensitized solar cells. Physica B 450:151–154

    Article  CAS  Google Scholar 

  20. Rodrigues LC, Barbosa PC, Silva MM, Smith MJ (2007) Electrochemical and thermal properties of polymer electrolytes based on poly(epichlorohydrin-co-ethylene oxide-co-ally glycidyl ether. Electrochim Acta 53:1427–1431

    Article  CAS  Google Scholar 

  21. Singh TJ, Bhat SV (2003) Morphology and conductivity studies of a new solid polymer electrolyte: (PEG)xLiClO4. Bull Mater Sci 26:707–714

    Article  CAS  Google Scholar 

  22. Mohd Noor SA, Gunzelmann D, Sun J, MacFarlane DR, Forsyth M (2014) Ion conduction and phase morphology in sulfonate copolymer ionomers based on ionic liquid-sodium cation mixtures. J Mater Chem A 2(2):365–374

    Article  CAS  Google Scholar 

  23. Uma T, Mahalingam T, Stimming U (2005) Solid polymer electrolytes based on poly(vinylchloride)-lithium sulfate. Mater Chem Phys 90:239–244

    Article  CAS  Google Scholar 

  24. Capiglia C, Imanishi N, Takeda Y, Henderson WA, Passerini S (2003) Poly(ethylene oxide) LiN(SO2CF2CF3)2 polymer electrolytes IV. Raman characterization. J Electrochem Soc 150(4):A525–A531

    Article  CAS  Google Scholar 

  25. Borodin O, Smith GD, Henderson W (2006) Li+ Cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidinium+TFSI ionic liquids. J Phys Chem B 110:16879–16886

    Article  CAS  Google Scholar 

  26. Ramesh S, Liew CW, Ramesh K (2011) Evaluation and investigation on the effect of ionic liquid onto PMMA-PVC gel polymer blend electrolytes. J Non Cryst Solids 357:2132–2138

    Article  CAS  Google Scholar 

  27. Ramesh S, Teh GB, Louh RF, Hou YK, Sin PY, Yi LJ (2011) Preparation and characterization of plasticized high molecular weight PVC-based polymer electrolytes. Sadhana 35:87–95

    Article  Google Scholar 

  28. Rodrigues LC, Silva MM, Smith MJ (2012) Synthesis and characterization of amorphous poly(ethylene oxide)/poly(trimethylene carbonate) polymer blend electrolytes. Electrochim Acta 86:339–345

    Article  CAS  Google Scholar 

  29. Singh PK, Kim KW, Rhee HW (2009) Development and characterization of ionic liquid doped solid polymer electrolyte membranes for better efficiency. Synth Met 159:1538–1541

    Article  CAS  Google Scholar 

  30. Doeff MM, Edman L, Sloop SE, Kerr J, De Jonghe LC (2000) Transport properties of binary salt polymer electrolytes. J Power Sources 89:227–231

    Article  CAS  Google Scholar 

  31. Shim J, Kim DG, Kim HJ, Lee JH, Lee JC (2015) Polymer composite electrolytes having core-shell silica fillers with anion-trapping boron moiety in the shell layer for all-solid-state lithium-ion batteries. ACS Appl Mater Interfaces 7:7690–7701

    Article  CAS  Google Scholar 

  32. Young NP, Devaux D, Khurana R, Coates GW, Balsara NP (2014) Investigating polypropylene-poly(ethylene oxide)-polypropylene triblock copolymers as solid polymer electrolytes for lithium batteries. Solid State Ion 263:87–94

    Article  CAS  Google Scholar 

  33. Han P, Zhu Y, Liu J (2015) An all-solid-state lithium ion battery electrolyte membrane fabricated by hot-pressing method. J Power Sources 284:459–465

    Article  CAS  Google Scholar 

  34. Olsen II, Koksbang R (1996) A temperature study of the ionic conductivity of a hybrid polymer electrolyte. Electrochem Soc Proc 143:570–574

    Article  CAS  Google Scholar 

  35. Albinsson I, Mellander BE, Stevens JR (1992) Ionic conductivity in poly(propylene glycol) complexed with lithium and sodium triflate. J Chem Phys 96:681–690

    Article  CAS  Google Scholar 

  36. Ghosh A, Wang C, Kofinas P (2010) Block copolymer solid battery electrolyte with high Li-ion transference number. J Electrochem Soc 157(7):A846–A849

    Article  CAS  Google Scholar 

  37. Hiller MM, Joost M, Gores HJ, Passerini S, Wiemhofer HD (2013) The influence of interface polarization on the determination of lithium transference numbers of salt in polyethylene oxide electrolytes. Electrochim Acta 114:21–29

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Author would like to acknowledge CRIM and Universiti Kebangsaan Malaysia for the support and opportunity given. This research is supported by the grant code ERGS/1/2013/TK07//UKM/02/4 and GGPM-2013-038.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurul Nabilah Mohd Radzir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radzir, N.N.M., Hanifah, S.A., Ahmad, A. et al. Effect of lithium bis(trifluoromethylsulfonyl)imide salt-doped UV-cured glycidyl methacrylate. J Solid State Electrochem 19, 3079–3085 (2015). https://doi.org/10.1007/s10008-015-2910-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-2910-z

Keywords

Navigation