Skip to main content

Advertisement

Log in

The hemoglobin-modified electrode with chitosan/Fe3O4 nanocomposite for the detection of trichloroacetic acid

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A hemoglobin (Hb)-modified electrode based on chitosan/Fe3O4 nanocomposite coated glassy carbon has been constructed for trichloroacetic acid (TCA) detection. The structure of chitosan/Fe3O4 nanocomposite was investigated using energy-dispersive X-ray analysis (EDS) and X-ray diffraction (XRD) patterns. The electron transfer rate constant (k s) of Hb was estimated for as high as 3.12 s−1. The immobilized Hb exhibited excellent electro-catalytic activity toward the reduction of TCA. The response current regressed to the concentration of TCA within the range of 5.70 μM to 205 μM with a detection limit of 1.9 μM (S/N = 3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. Jiang C-M, Lin X-Q (2009) J Solid State Electrochem 13:1273–1278

    Article  CAS  Google Scholar 

  2. Yin H-S, Zhou Y-L, Liu T, Tang T-T, Ai S-Y, Zhu L-S (2012) J Solid State Electrochem 16:731–738

    Article  CAS  Google Scholar 

  3. Hu Y-F, Zhang Z-H, Zhang H-B, Luo L-J, Yao S-Z (2012) J Solid State Electrochem 16:857–867

    Article  CAS  Google Scholar 

  4. Wang X-F, You Z, Sha H-L, Sun Z-L, Sun W (2014) J Solid State Electrochem 18:207–213

    Article  CAS  Google Scholar 

  5. Chen A-Z, Lin X-F, Wang S-B, Li L, Liu Y-G, Ye L, Wang G-Y (2012) Toxicol Lett 212:75–82

    Article  CAS  Google Scholar 

  6. Liu H-L, Ko SP, Wu J-H, Jung M-H, Min JH, Lee JH, An BH, Kim YK (2007) J Magn Magn Mater 310:815–817

    Article  Google Scholar 

  7. Yu C, Wang L, Zhu Z, Bao N, Gu H (2014) Microchim Acta 181:55–61

    Article  CAS  Google Scholar 

  8. Miao P, Wang B, Yu Z, Zhao J, Tang Y (2015) Biosens Bioelectron 63:365–370

    Article  CAS  Google Scholar 

  9. Zhang X, Niu H, Pan Y, Shi Y, Cai Y (2011) J Colloid Interface Sci 362:107–112

    Article  CAS  Google Scholar 

  10. Xu HF, Dai H, Chen GN (2010) Talanta 81:334–338

    Article  CAS  Google Scholar 

  11. Kang XH, Wang J, Wu H, Aksay IA, Liu J, Lin YH (2009) Biosens Bioelectron 25:901–905

    Article  CAS  Google Scholar 

  12. Wang Y-H, Yu C-M, Pan Z-Q, Wang Y-F, Guo J-W, Gu H-Y (2013) Microchim Acta 180:659–667

    Article  CAS  Google Scholar 

  13. Liu B-Z, Hu X-B, Deng Y-H, Yang S-J, Sun C (2012) J Solid State Electrochem 16:927–930

    Article  CAS  Google Scholar 

  14. Ellis KV (1991) Crit Rev Env Cont 20(5–6):341–407

    Article  CAS  Google Scholar 

  15. Fisher JW, Whittaker TA, Taylor DH, Clewell 3rd HJ, Andersen ME (1989) Toxicol Appl Pharm. 102(3):497–513

    Article  Google Scholar 

  16. International Agency for Research on Cancer (IARC), Trichloroethylene (1995) IARC Monograph on the evaluation of the carcinogenic risk of chemicals to human Lyon France 63:75–158

  17. Bull RJ, Sanchez IM, Nelson MA, Larson JL, Lansing AJ (1990) Toxicol 63:341–359

    Article  CAS  Google Scholar 

  18. DeAngelo AB, Daniel FB, Most BM, Olson GR (1997) J Toxicol Env Health 52:425–445

    CAS  Google Scholar 

  19. Cantor KP, Lynch CF, Hildesheim ME, Dosemeci M, Lubin J, Alavanja M, Craun GF (1998) Risk of bladder cancer. Epidemiology 9:21–28

    Article  CAS  Google Scholar 

  20. DeAngelo AB, Daniel FB, Stober JA, Olsen GR (1991) Fundam Appl Toxicol 16:337–347

    Article  CAS  Google Scholar 

  21. Roberts JF, Egmond RV, Price OR (2010) Ecotox Environ Safe 73:56–61

    Article  CAS  Google Scholar 

  22. World Health Organization (1996) Health criteria and other supporting information. In: Guidelines for drinking water quality, 2nd edn, vol 2, Geneva, pp. 940–949

  23. USEPA (1998) Natural primary drinking water regulations: disinfectants and disinfection hypmducts. Fed Regist 63(241):69390–69476

    Google Scholar 

  24. Wang YH, Wong PK (2005) Water Res 39:1844–1848

    Article  CAS  Google Scholar 

  25. Esclapez MD, Tudela I, Díez-García MI, Sáez V (2015) Appl Catal B-Environ 166-167:66–74

    Article  CAS  Google Scholar 

  26. Lewis TE, Wolfinger TF, Barta ML (2004) Environ Int 30(8):1119–1150

    Article  CAS  Google Scholar 

  27. Esclapez MD, Díez-García MI, Sáez V, Tudela I, Pérez JM, González-García J, Bonete P (2011) Electrochim Acta 56(24):8138–8146

    Article  CAS  Google Scholar 

  28. Prieto-Blanco MC, Alpendurada MF, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D, Machado S, Gonçalves C (2012) Talanta 94:90–98

    Article  CAS  Google Scholar 

  29. Cardador MJ, Gallego M (2010) J Chromatogr B-Anal 878:1824–1830

    Article  CAS  Google Scholar 

  30. Simone PS, Ranaivo PL, Geme G, Brown MA, Emmert GL (2009) Anal Chim Acta 654:133–140

    Article  CAS  Google Scholar 

  31. Deng J-G, Peng Y-X, He C-L, Long X-P, Li P, Albert S (2003) C Chan. Polym Int 52:1182–1187

    Article  CAS  Google Scholar 

  32. Li Y, Pang X, Epand RF, Zhitomirsky I (2011) Mater Lett 65:1463–1465

    Article  CAS  Google Scholar 

  33. Dong S, Peng L, Liu D, Yang Q, Huang T (2014) Bioelectrochem 98:87–93

    Article  CAS  Google Scholar 

  34. Reddy DHK, Lee S-M (2013) Adv Colloid Interfac 201-202:68–93

    Article  CAS  Google Scholar 

  35. Zheng J, Zhao J, Gong C (2012) Acta Chim Sin 70:617–623

    Article  CAS  Google Scholar 

  36. Lan Q, Liu C, Yang F, Liu S, Xu J, Sun D (2007) J Colloid Interface Sci 310:260–269

    Article  CAS  Google Scholar 

  37. Wang YH, Gu HY (2009) Microchim Acta 164:41–47

    Article  CAS  Google Scholar 

  38. Seeber R, Terzi F, Zanardi C (2014)Functional Materials in Amperometric Sensing. London, New York Dordrecht

  39. Zhao G, Xu JJ, Chen HY (2006) Electrochem Commun 8:148–154

    Article  CAS  Google Scholar 

  40. Liu Y, Han T, Chen C, Bao N, Yu CM, Gu HY (2011) Electrochim Acta 56:3238–3247

    Article  CAS  Google Scholar 

  41. Yu CM, Zhou XH, Gu HY (2010) Electrochim Acta 55:8738–8743

    Article  CAS  Google Scholar 

  42. Laviron E (1979) J electroanal chem 101:19–28

    Article  CAS  Google Scholar 

  43. Lopes CB, FdAdS S, Lima PR, JDd F, JdS S, Kubota LT, MOF G (2015) J Solid State Electrochem 19:2819–2829. doi:10.1007/s10008-015-2862-3

  44. Yu C, Wang Y, Wang L, Zhu Z, Bao N, Gu H (2013) Colloid Surface B 103:231–237

    Article  CAS  Google Scholar 

  45. Li Y-C, Li Y-J, Yang Y-Y (2012) J Solid State Electrochem 16:1133–1140

    Article  CAS  Google Scholar 

  46. Wang Y-Q, Zhang H-J, Yao D, Pu J-J, Zhang Y, Gao X-R, Sun Y-M (2013) J Solid State Electrochem 17:881–887

    Article  CAS  Google Scholar 

  47. Apostolou T, Pascual N, Marco M-P, Moschos A, Petropoulos A, Kaltsas G, Kintzios S (2014) Talanta 125:336–340

    Article  CAS  Google Scholar 

  48. Kibechu RW, Mamo MA, Msagati TAM, Sampath S, Mamba BB (2014) Phys Chem Earth 76-78:49–53

    Article  Google Scholar 

  49. Liu B, Ding C, Xiao B, Cui L, Wang M (2014) Mater Sci Eng C 37:108–112

    Article  CAS  Google Scholar 

  50. Li Y-P, Cao H-B, Zhang Y (2006) Chemosphere 63:359–364

    Article  CAS  Google Scholar 

  51. Analytical Methods Committee (1987) Analyst 112:199–204

    Article  Google Scholar 

  52. Altamar L, Fernández L, Borras C, Mostany J, Carrero H, Scharifker B (2010) Sens Actuat B-Chem 146:103–110

    Article  CAS  Google Scholar 

  53. Liu B, Deng Y, Hu X, Gao Z, Sun C (2012) Electrochim Acta 76:410–415

    Article  CAS  Google Scholar 

  54. Suedee R, Intakong W, Dickert FL (2006) Anal Chim Acta 569:66–75

    Article  CAS  Google Scholar 

  55. Najafi M, Darabi S, Tadjarodi A, Imani M (2013) Electroanalysis 25(2):487–492

    Article  CAS  Google Scholar 

  56. Kurd M, Salimi A, Hallaj R (2013) Mater Sci Eng C 33:1720–1726

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant numbers 21475070; 21175075), the Natural Science Foundation of Jiangsu Province (Grant number BK2011047), and the Universities Natural Science Foundation of Jiangsu Province (Grant number 12KJD150010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Ying Gu or Yi-Feng Tu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YH., Yu, CM., Gu, HY. et al. The hemoglobin-modified electrode with chitosan/Fe3O4 nanocomposite for the detection of trichloroacetic acid. J Solid State Electrochem 20, 1337–1344 (2016). https://doi.org/10.1007/s10008-015-3097-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-015-3097-z

Keywords

Navigation