Skip to main content
Log in

The electrochemical performance of AB3-type hydrogen storage alloy as anode material for the nickel metal hydride accumulators

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

For the purpose of lowering the cost of metal hydride electrode, the La of LaY2Ni9 electrode was replaced by Ce. The electrochemical performances of the CeY2Ni9 negative electrode, at a room and different temperatures, were compared with the parent alloy LaY2Ni9. At room temperature during a long cycling, the evolution of the electrochemical capacity—the diffusivity indicator (\( \frac{D_{\mathrm{H}}}{a^2} \))—the exchange current density, and the equilibrium potential were determined. At different temperatures, the electrochemical characterization of this alloy allowed the estimation of the enthalpy, the entropy, and the activation energy of the hydride formation. The evolution of the high-rate dischargeability was also evaluated at different temperatures. Compared with the parent LaY2Ni9 alloy, CeY2Ni9 exhibits an easy activation and good reaction reversibility. This alloy also conserves a good lifetime during a long-term cycling. A lower activation energy determined for this alloy corresponds to an easy absorption of hydrogen into this new alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Annemieke WC, van den Berg and Carlos Otero Arean (2008) Chem Comm 668–681 DOI:10.1039/b712576n

  2. Feng F, Geng M, Northwood DO (2001) Int J Hydrog Energy 26:725–734

    Article  CAS  Google Scholar 

  3. Soria ML, Chacon J, Hernandez JC (2001) J Power Sources 102:97–104

    Article  CAS  Google Scholar 

  4. Anani A, Visintin A, Petrov K, Srinivasan S, Reilly JJ, Johnson JR, Schwarz RB, Desch PB (1994) J Power Sources 47:261–275

    Article  CAS  Google Scholar 

  5. Hong K (2001) J Power Sources 96:85–89

    Article  CAS  Google Scholar 

  6. Cuevas F, Joubert JM, Latroche M, Percheron-Guégan A (2001) Appl Phys A Mater Sci Process 72:225–238

    Article  CAS  Google Scholar 

  7. Petrii OA, Levin EE, Russ J (2007) General Chem 77:790–796

    Article  CAS  Google Scholar 

  8. Liu Y, Pan H, Gao M, Wang Q (2011) J Mater Chem 21:4743–4755

    Article  CAS  Google Scholar 

  9. Fetcenko MA, Ovshinsky SR, Reichman B, Young K, Fiero C, Zallen J, Mays W, Ouchi T (2007) J Power Sources 165:544–551

    Article  CAS  Google Scholar 

  10. Armand M, Tarascon JM (2008) Nature 451:652

    Article  CAS  Google Scholar 

  11. Whittingham MS (2004) Chem Rev 104:4271–4301

    Article  CAS  Google Scholar 

  12. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Energy Environ Sci 4:3243

    Article  CAS  Google Scholar 

  13. Young K, Nei J (2013) Materials 6:4574–4608

    Article  Google Scholar 

  14. Young K, Ouchi T, Mays W, Reichman B, Fetcenko MA (2009) J Alloys Compd 480:434–439

    Article  CAS  Google Scholar 

  15. Young K, Ouchi T, Fetcenko MA (2009) J Alloys Compd 480:428–433

    Article  CAS  Google Scholar 

  16. Xu Y, Chen Y, Wu J, Decheng Li D, Ju H, Zheng J (2010) Int J Hydrog Energy 35:6366–6380

    Article  CAS  Google Scholar 

  17. Xu YH, Chen CP, Wang XL, Wang QD (2002) J Alloys Compd 335:262–265

    Article  CAS  Google Scholar 

  18. Tliha M, Mathlouthi H, Lamloumi J, Percheron-Guégan A (2007) Int J Hydrog Energy 32:611–614

    Article  CAS  Google Scholar 

  19. Sun J, Fan Y, Liu B, Ji L, Wang Y, Ma M (2015) J Alloy Compd 641:148–154

    Article  CAS  Google Scholar 

  20. Liu K, Shang J, Ouyang Z, Duan Y, Xing C, Fu Y, Liang F, Lin J, Liu W, Wang L (2015) J Alloy Compd 630:158–162

    Article  CAS  Google Scholar 

  21. Feng F, Northwood DO (2004) Int J Hydrog Energy 29:955–960

    Article  CAS  Google Scholar 

  22. Ben Moussa M, Abdellaoui M, Lamloumi J, Percheron Guégan A (2013) J Alloy Compd 575:414–418

    Article  CAS  Google Scholar 

  23. Li X, Dong H, Zhang A, Wei Y (2006) J Alloy Compd 426:93–96

    Article  CAS  Google Scholar 

  24. Taniguchi A, Fujioka N, Ikoma M, Ohta A (2001) J Power Sources 100:117–124

    Article  CAS  Google Scholar 

  25. Jung DY, Lee BH, Kim SW (2002) J Power Sources 109:1–10

    Article  CAS  Google Scholar 

  26. Lichtenberg F, Kohler U, Folzer A, Adkins NJE, Zuttel A (1997) J Alloys Compd 253-254:570–573

    Article  CAS  Google Scholar 

  27. Gifford P, Adams J, Corrigan D, Venkatesan S (1999) J Power Sources 80:157–163

    Article  CAS  Google Scholar 

  28. Qiu SJ, Chu HL (2009) ZhangY, Sun DL, Song XY, Sun LX, Xu F. J Alloys Compd 471:453–456

    Article  CAS  Google Scholar 

  29. Chai Y, Li Z, Yin W, Zhang X (2006) Zhao M. J Appl Electrochem 36:739–743

    Article  CAS  Google Scholar 

  30. Qiao Y, Hao M, Li M, Zhu X, Cao G (2006) Scr Mater 55:279–282

    Article  CAS  Google Scholar 

  31. Lin J (2014) ChengY, Liang F, Sun L, Yin D, Yaoming Wu Y, Wang L. Int J Hydrog Energy 39:13231–13239

    Article  CAS  Google Scholar 

  32. Ben Moussa M, Abdellaoui M, Khaldi C, Mathlouthi H, Lamloumi J, Percheron Guégan A (2005) J Alloys Compd 399:264–269

    Article  CAS  Google Scholar 

  33. Tliha M, Mathlouthi H, Khaldi C, Lamloumi J, Percheron-Guégan A (2006) J Power Sources 160:1391–1394

    Article  CAS  Google Scholar 

  34. Khaldi C, Boussami S, Ben Rejeb B, Mathlouthi H, Lamloumi J (2010) Mater Sci Eng B 175:22–28

    Article  CAS  Google Scholar 

  35. Khaldi C, Mathlouthi H, Lamloumi J, Percheron-Guegan A (2003) J Alloys Compd 360:266–271

    Article  CAS  Google Scholar 

  36. Mathlouthi H, Khaldi C, Ben Moussa M, Lamloumi J, Percheron-Guegan A (2004) J Alloys Comp 375:297–304

    Article  CAS  Google Scholar 

  37. Khaldi C, Mathlouthi H, Lamloumi J, Percheron-Guegan A (2008) Phys Chem News 40:139–142

    CAS  Google Scholar 

  38. Khaldi C, Mathlouthi H, Lamloumi J, Percheron-Guegan A (2006) Phys Chem News 29:76–80

    CAS  Google Scholar 

  39. Liu Y, Cao Y, Huang L, Gao M, Pan H (2011) J Alloys Compd 509:675–686

    Article  CAS  Google Scholar 

  40. Khaldi C, Mathlouthi H, Lamloumi J, Percheron-Guégan A (2004) Int J Hydrog Energy 29:307–311

    Article  CAS  Google Scholar 

  41. Shen CC, Perng TP (2005) J Alloys Comp 392:187–191

    Article  CAS  Google Scholar 

  42. Kondo M, Asano K, Iijima Y (2005) J Alloys Comp 393:269–273

    Article  CAS  Google Scholar 

  43. Popović MM, Grgur BN, Vojnović MV, Rakin P, Krstajić NV (2000) J Alloys Compd 298:107–113

    Article  Google Scholar 

  44. Tliha M, Khaldi C, Boussami S, Fenineche N, El-Kedim O, Mathlouthi H, Lamloumi J (2014) J Solid State Electrochem 18:577–593

    Article  CAS  Google Scholar 

  45. Zhang X, Chai Y, Yin W, Zhao M (2004) J Solid State Chem 177:2373–2377

    Article  CAS  Google Scholar 

  46. Wei X, Tang R, Liu Y, Zhang P, Yu G, Zhu J (2006) Int J Hydrog Energy 31:1365–1371

    Article  CAS  Google Scholar 

  47. Srivastava S, Upadhyay RK (2007) Int J Hydrog Energy 32:4195–4201

    Article  CAS  Google Scholar 

  48. Wei X, Liu S, Dong H, Zhang P, Liu Y, Zhu J, Yu G (2007) Electrochim Acta 52:2423–2428

    Article  CAS  Google Scholar 

  49. Laurencelle F, Dehouche Z, Goyette J (2006) J Alloys Compd 424:266–271

    Article  CAS  Google Scholar 

  50. Tan Z, Yang Y, Li Y, Shao H (2008) J Alloys Compd 453:79–86

    Article  CAS  Google Scholar 

  51. Ye H, Xia B, Wu W, Du K, Zhang H (2002) J Power Sources 111:145–151

    Article  CAS  Google Scholar 

  52. Chen J, Takeshita HT, Tanaka H, Kuriyama N, Sakai T, Uehara I, Haruta M (2000) J Alloys Compd 302:304–313

    Article  CAS  Google Scholar 

  53. Zhang Y, Wang H, Zhai T, Yang T, Qi Y, Zhao D (2014) Int J Hydrog Energy 39:3790–3798

    Article  CAS  Google Scholar 

  54. Knotek V, Vojtečh D (2013) Int J Hydrog Energy 38:3030–3040

    Article  CAS  Google Scholar 

  55. Tian X, Yun G, Wang H, Shang T, Yao Z, Wei W, Liang X (2014) Int J Hydrog Energy 39:8474–8481

    Article  CAS  Google Scholar 

  56. Jiang W, Lan Z, Xu L, Li G, Guo J (2009) Int J Hydrog Energy 34:4827–4832

    Article  CAS  Google Scholar 

  57. Zhao X, Ma L (2009) Int J Hydrog Energy 34:4788–4796

    Article  CAS  Google Scholar 

  58. Kohno T, Yoshida H, Kawashima F, Inaba T, Sakai I, Yamamoto M, Kanda M (2000) J Alloys Compd 311:L5–L7

    Article  CAS  Google Scholar 

  59. Cheng LF, Wang YX, Wang RB, Pu ZH, Zhang XG, He DN (2009) Int J Hydrog Energy 34:8073–8078

    Article  CAS  Google Scholar 

  60. Xiangqian S, Yungui C, Mingda T, Chaoling W, Gang D, Zhenzhen K (2009) Int J Hydrog Energy 34:3395–3403

    Article  Google Scholar 

  61. Li Y, Han D, Han S, Zhu X, Hu L, Zhang Z, Liu Y (2009) Int J Hydrog Energy 34:1399–1404

    Article  CAS  Google Scholar 

  62. Pan H, Jin Q, Gao M, Liu Y, Li R, Lei Y (2004) J Alloys Compd 373:237–245

    Article  CAS  Google Scholar 

  63. Zhang XB, Sun DZ, Yin WY, Chai YJ, Zhao MS (2005) Electrochim Acta 50:1957–1964

    Article  CAS  Google Scholar 

  64. Zhang F, Luo Y, Deng A, Tang Z, Kang L, Chen J (2006) Electrochimg Acta 52:24–32

    Article  CAS  Google Scholar 

  65. Pan H, Jin Q, Gao M, Liu Y, Li R, Lei Y, Wang Q (2004) J Alloys Compd 376:196–204

    Article  CAS  Google Scholar 

  66. Tang R, Liu Y, Zhu C, Zhu J, Yu G (2006) Mater Chem Phys 95:130–134

    Article  CAS  Google Scholar 

  67. Kadir K, Sakai T, Uehara I (2000) J Alloys Compd 302:112–117

    Article  CAS  Google Scholar 

  68. Denys RV, Riabov AB, Yartys VA, Sato M (2008) Delaplane RG. J Solid State Chem 181:812–821

    Article  CAS  Google Scholar 

  69. Ben Belgacem Y, Khaldi C, Boussami S, Lamloumi J, Mathlouthi H (2014) J Solid State Electrochem 18:2019–2026

    Article  CAS  Google Scholar 

  70. Khaldi C, Mathlouthi H, Lamloumi J, Percheron-Guégan A (2004) J Alloys Comp 384:249–253

    Article  CAS  Google Scholar 

  71. Boussami S, Khaldi C, Lamloumi J, Mathlouthi H, Takenouti H (2012) Electrochim Acta 69:203–208

    Article  CAS  Google Scholar 

  72. Li CJ, Wang FR, Cheng WH, Li W, Zhao WT (2001) J Alloys Compd 315:218–223

    Article  CAS  Google Scholar 

  73. Ben Belgacem Y, Khaldi C, Lamloumi J, Takenouti H (2015) J Alloys Compd 631:7–14

    Article  CAS  Google Scholar 

  74. Liu Y, Pan H, Yue Y, Wu X, Chen N, Lei Y (2005) J Alloys Compd 395:291–299

    Article  CAS  Google Scholar 

  75. Zheng G, Popov BN, White RE (1995) J Electrochem Soc 142:2695–2698

    Article  CAS  Google Scholar 

  76. Raju M, Ananth MV, Vijayaraghavan L (2009) Electrochim Acta 54:1368–1374

    Article  CAS  Google Scholar 

  77. Raju M, Ananth MV, Vijayaraghavan L (2008) J Power Sources 180:830–835

    Article  CAS  Google Scholar 

  78. Khaldi C, Boussami S, Tliha M, Azizi S, Fenineche N, El-Kedim O, Lamloumi J (2013) J Alloys Comp 574:59–66

    Article  CAS  Google Scholar 

  79. Liu Y, Pan H, Gao M, Zhu Y, Lei Y, Wang K (2004) Int J Hydrog Energy 29:297–305

    Article  CAS  Google Scholar 

  80. Ayari M, Paul-Boncour V, Lamloumi J, Mathlouthi H, Percheron-Guégan A (2006) J Alloys Compd 420:251–255

    Article  CAS  Google Scholar 

  81. Mani N, Ramaprabhu S (2004) J Alloys Compd 363:275–291

    Article  CAS  Google Scholar 

  82. Hou CP, Zhao MS, Li J, Huang L, Wang YZ, Yue M (2008) Int J Hydrog Energy 33:3762–3766

    Article  CAS  Google Scholar 

  83. Kleperis J, Wójcik G, Czerwinski A, Skowronski J, Kopczyk M, Beltowska-Brzezinska M (2001) J Solid State Electrochem 5:229–249

    Article  CAS  Google Scholar 

  84. K. Hong, Method for preparing materials for hydrogen storage and for hydride electrode applications. US patent 5,006,328; 1991.

  85. Giza K, Iwasieczko W, Pavlyuk VV, Bala H, Drulis H (2008) J Power Sources 181:38–40

    Article  CAS  Google Scholar 

  86. Giza K, Iwasieczko W, Pavlyuk VV, Bala H, Drulis H (2007) J Alloys Compd 429:352–356

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratitude to Dr. Latroche (LCMTR, CNRS, France) for having offered them the opportunity to prepare the alloys in his laboratory. This work was partly supported by the scientific cooperation under “CMCU-PHC Utique: 10G1208.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chokri Khaldi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belgacem, Y.B., Khaldi, C., Lamloumi, J. et al. The electrochemical performance of AB3-type hydrogen storage alloy as anode material for the nickel metal hydride accumulators. J Solid State Electrochem 20, 1949–1959 (2016). https://doi.org/10.1007/s10008-016-3198-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3198-3

Keywords

Navigation